Gap plasmon-based phase-amplitude metasurfaces: material constraints [Invited]

Gap surface plasmon (GSP) based metasurfaces, consisting of a subwavelength thin dielectric spacer sandwiched between a metal film and an array of metal nanobricks, have in recent years attracted considerable attention due to the ease of fabrication and the possibility to control both the phase and amplitude of the reflected light. In this work, we numerically investigate the influence of metal properties on the performance of GSP-based metasurfaces, considering in detail (at the wavelength λ = 800 nm) the typical plasmonic metal - gold, the alternative plasmonic material -titanium nitride, and the ideal metal (i.e., perfect electric conductor). We demonstrate that the plasmonic properties of non-ideal metals, in addition to the possibility to engineer the amplitude of the reflected light, also lead to a wider range of reflection phase control for relatively small unit cell sizes of ∼ λ/3 as compared to the metasurfaces using the ideal metal. Moreover, titanium nitride is found to represent a viable alternative (to gold) material that promises less stringent requirements when designing amplitude and phase-gradient GSP-based metasurfaces.

[1]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[2]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[3]  J. Sanz,et al.  Optical and electronic properties of TiCxNy films , 2001 .

[4]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[5]  Anders Pors,et al.  Analog computing using reflective plasmonic metasurfaces. , 2015, Nano letters.

[6]  Anders Pors,et al.  Efficient and broadband quarter-wave plates by gap-plasmon resonators. , 2013, Optics express.

[7]  Q. Wei,et al.  Polarization Conversion with Elliptical Patch Nanoantennas , 2012 .

[8]  Andreas Tünnermann,et al.  Spatial and Spectral Light Shaping with Metamaterials , 2012, Advanced materials.

[9]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[10]  Yanmeng Dai,et al.  Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure. , 2014, Optics express.

[11]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[12]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[13]  Anders Pors,et al.  Broadband plasmonic half-wave plates in reflection. , 2013, Optics letters.

[14]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[15]  S. Costanzo,et al.  Miniaturized Fractal Reflectarray Element Using Fixed-Size Patch , 2014, IEEE Antennas and Wireless Propagation Letters.

[16]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[17]  S. Bozhevolnyi,et al.  Plasmonic metasurfaces for efficient phase control in reflection. , 2013, Optics express.

[18]  Xueqin Huang,et al.  Optical metamaterial for polarization control , 2009 .

[19]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[20]  B. O. Seraphin,et al.  Optical properties of CVD-coated TiN, ZrN and HfN , 1982 .

[21]  D. Gramotnev,et al.  Continuous layer gap plasmon resonators. , 2011, Optics express.

[22]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[23]  A. Kildishev,et al.  Titanium nitride as a plasmonic material for visible and near-infrared wavelengths , 2012 .

[24]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[25]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[26]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[27]  Sergey I. Bozhevolnyi,et al.  Gap plasmon-based metasurfaces for total control of reflected light , 2013, Scientific Reports.

[28]  Sergey I. Bozhevolnyi,et al.  Plasmonic metagratings for simultaneous determination of Stokes parameters , 2015, 1609.04691.

[29]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[30]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[31]  Urcan Guler,et al.  Plasmonics on the slope of enlightenment: the role of transition metal nitrides. , 2015, Faraday discussions.

[32]  Qiang Li,et al.  Sub-wavelength quarter-wave plate based on plasmonic patch antennas , 2013 .

[33]  Sergey I. Bozhevolnyi,et al.  Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons , 2014, Light: Science & Applications.

[34]  Mark L Brongersma,et al.  Introductory lecture: nanoplasmonics. , 2015, Faraday discussions.

[35]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[36]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[37]  H. Mosallaei,et al.  Birefringent reflectarray metasurface for beam engineering in infrared. , 2013, Optics letters.

[38]  B. O. Seraphin,et al.  Optical Properties of CVD-Coated TiN, ZrN and HfN , 1982 .

[39]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[40]  Yuri S. Kivshar,et al.  Functional and nonlinear optical metasurfaces , 2015 .

[41]  Alexandra Boltasseva,et al.  Oxides and nitrides as alternative plasmonic materials in the optical range [Invited] , 2011 .

[42]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[43]  Alexandra Boltasseva,et al.  Semiconductors for plasmonics and metamaterials , 2010, 1108.1529.

[44]  S. Bozhevolnyi,et al.  Quantum Emitters near Layered Plasmonic Nanostructures: Decay Rate Contributions , 2015, 1609.04681.

[45]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[46]  M. Cortie,et al.  Optical properties and plasmon resonances of titanium nitride nanostructures , 2010, Nanotechnology.