Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning

When the training instances of the target class are heavily outnumbered by non-target training instances, SVMs can be ineffective in determining the class boundary. To remedy this problem, we propose an adaptive conformal transformation (ACT) algorithm. ACT considers feature-space distance and the class-imbalance ratio when it performs conformal transformation on a kernel function. Experimental results on UCI and real-world datasets show ACT to be effective in improving class prediction accuracy

[1]  John Shawe-Taylor,et al.  Optimizing Classifers for Imbalanced Training Sets , 1998, NIPS.

[2]  Edward Y. Chang,et al.  CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines , 2003, IEEE Trans. Circuits Syst. Video Technol..

[3]  Harvey Cohn,et al.  Conformal Mapping on Riemann Surfaces , 1967 .

[4]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[5]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[6]  Si Wu,et al.  Conformal Transformation of Kernel Functions: A Data-Dependent Way to Improve Support Vector Machine Classifiers , 2002, Neural Processing Letters.

[7]  John Shawe-Taylor,et al.  The Perceptron Algorithm with Uneven Margins , 2002, ICML.

[8]  John Shawe-Taylor,et al.  Refining Kernels for Regression and Uneven Classification Problems , 2003, AISTATS.

[9]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[10]  Yi Lin,et al.  Support Vector Machines for Classification in Nonstandard Situations , 2002, Machine Learning.

[11]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[12]  Stan Matwin,et al.  Addressing the Curse of Imbalanced Training Sets: One-Sided Selection , 1997, ICML.

[13]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[14]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[15]  Si Wu,et al.  Improving support vector machine classifiers by modifying kernel functions , 1999, Neural Networks.

[16]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[17]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[18]  Christophe Ambroise,et al.  Semi-supervised MarginBoost , 2001, NIPS.

[19]  Tom Fawcett,et al.  Adaptive Fraud Detection , 1997, Data Mining and Knowledge Discovery.

[20]  Nello Cristianini,et al.  Controlling the Sensitivity of Support Vector Machines , 1999 .

[21]  Christopher J. C. Burges,et al.  Geometry and invariance in kernel based methods , 1999 .

[22]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.