Global geometry optimization of (Ar)n and B(Ar)n clusters using a modified genetic algorithm

A modified deterministic/stochastic genetic algorithm (DS‐GA) method is proposed for the determination of the global minimum of atomic clusters described by pairwise analytic interaction potentials. Our modification of the standard GA method involves a coarse local minimization of each member of the population at every generation, as well as including the gradient into the fitness function. For Lennard‐Jones (Ar)n clusters with n<30, the DS‐GA converges far more quickly to the global minimum than either conventional GA methods or random search procedures. An application of this DS‐GA is made to heterogeneous clusters of B(2P) with multiple Ar atoms. The interaction potential is given by the lowest state of a 3×3 electronic Hamiltonian. The Ar–Ar potential and the lower energy (Π state) B–Ar potential are very similar. In contrast, the higher energy (Σ state) B–Ar interaction is essentially repulsive. Consequently, the B atom is nearly always found to substitute for one of the atoms in the corresponding (A...

[1]  Yu-lin Huang,et al.  Experimental and theoretical characterization of the BAr van der Waals complex: The X 2Π, A 2Σ+, and B 2Σ+ electronic states , 1993 .

[2]  R. A. Aziz,et al.  The argon and krypton interatomic potentials revisited , 1986 .

[3]  J. Boatz,et al.  Monte Carlo simulations of the structures and optical absorption spectra of Na atoms in Ar clusters, surfaces, and solids , 1994 .

[4]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[5]  Yong L. Xiao,et al.  Genetic algorithm: a new approach to the prediction of the structure of molecular clusters , 1993 .

[6]  H. Scheraga,et al.  On the multiple-minima problem in the conformational analysis of molecules: deformation of the potential energy hypersurface by the diffusion equation method , 1989 .

[7]  R. Olson,et al.  Ab initio calculations for the X 2Σ, A 2Π, and B 2Σ states of NaAr: Emission spectra and cross sections for fine‐structure transitions in Na–Ar collisions , 1977 .

[8]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[9]  M. Hoare,et al.  Physical cluster mechanics: Statics and energy surfaces for monatomic systems , 1971 .

[10]  Dario A. Estrin,et al.  Electronic spectra of NaAr4 and NaAr6: Isomerization and melting , 1992 .

[11]  B. Hartke Global geometry optimization of clusters using genetic algorithms , 1993 .

[12]  V. A. Apkarian,et al.  Adiabatic approximation and non-adiabatic effects for open-shell atoms in an inert solvent: F atoms in solid Kr , 1994 .

[13]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[14]  Frank H. Stillinger,et al.  Cluster optimization simplified by interaction modification , 1990 .

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[17]  Richard S. Judson,et al.  Conformational searching methods for small molecules. II. Genetic algorithm approach , 1993, J. Comput. Chem..

[18]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[19]  Juan C. Meza,et al.  Do intelligent configuration search techniques outperform random search for large molecules , 1992 .

[20]  E. Hansen Global optimization using interval analysis — the multi-dimensional case , 1980 .

[21]  R. Smith,et al.  Energy minimization in binary alloy models via genetic algorithms , 1992 .

[22]  Jordi Mestres,et al.  Genetic algorithms: A robust scheme for geometry optimizations and global minimum structure problems , 1995, J. Comput. Chem..

[23]  M. Klein,et al.  Electronic states and dynamical behavior of LiXen and CsXen clusters , 1991 .

[24]  L N Frazer,et al.  Rapid Determination of the Critical Temperature in Simulated Annealing Inversion , 1990, Science.

[25]  R. Lavery,et al.  A new approach to the rapid determination of protein side chain conformations. , 1991, Journal of biomolecular structure & dynamics.

[26]  Richard S. Judson,et al.  Analysis of the genetic algorithm method of molecular conformation determination , 1993, J. Comput. Chem..

[27]  S. J. Singer,et al.  Electronic energy shifts of a sodium atom in argon clusters by simulated annealing , 1990 .

[28]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[29]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[30]  A. Krylov,et al.  Reorientation dynamics of electronic orbitals in condensed phases: Simulations of F(2P) atoms in solid Kr , 1994 .

[31]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[32]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[33]  H. Szu Fast simulated annealing , 1987 .

[34]  William H. Press,et al.  Numerical recipes : the art of scientific computing : FORTRAN version , 1989 .

[35]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[36]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[37]  Wolfgang Linert,et al.  Numerical Minimization Procedures in Molecular Mechanics: Structural Modelling of the Solvation of -Cyclodextrin , 1992, Comput. Chem..

[38]  J. J. Wright,et al.  Use of dimer potentials to calculate the energy levels of alkali atoms in rare‐gas matrices , 1983 .

[39]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[40]  Janet M. Thornton,et al.  Rebuilding flavodoxin from Cα coordinates: A test study , 1989 .

[41]  S. Castellano,et al.  ANALYSIS OF NMR SPECTRA BY LEAST SQUARES , 1964 .