Retrieval of tropical forest structure characteristics from bi-directional reflectance of SPOT images

The natural tropical rain forest is an irregular mosaic of ever-changing developmental phases of vegetation. Its structure is a key information for forest monitoring and sustainable management. This experimental study aims to improve the understanding of the relationships between the forest structure and the anisotropic behaviour of the remotely sensed forest reflectance. It relics on intensive field-based measurements and synchronous remote sensing data collection. Three different tropical rain forests have been observed using six different SPOT-HRVIR images. Texture information is related to forest structure by means of geostatistical analysis based on directional variograms for the NIR channel. The results demonstrate a strong interaction between the elements contributing to the forest structure, i.e. the tree crowns and the gaps, and the viewing and illumination conditions of each observation. The concept of the Bi-directional Standard deviation Distribution Function (BSDF) is introduced to discriminate the forest structures. A simple geometric-optical gap model explains more than 80% of the variability of the NIR reflectance standard deviation. Finally, a cross-thresholding approach using the NIR reflectance and the Local Directional Contrast (LDC) is proposed and successfully applied to discriminate the canopy roughness of the different forest sites. (C) 2002 Elsevier Science Inc. All rights reserved.

[1]  C. Evrard,et al.  Recherches écologiques sur le peuplement forestier des sols hydromorphes de la Cuvette central congolaise , 1968 .

[2]  Jean-Philippe Gastellu-Etchegorry,et al.  Sensitivity of Texture of High Resolution Images of Forest to Biophysical and Acquisition Parameters , 1998 .

[3]  James R. Runkle,et al.  Guidelines and sample protocol for sampling forest gaps. , 1992 .

[4]  C. Woodcock,et al.  The use of variograms in remote sensing: I , 1988 .

[5]  Nicholas C. Coops,et al.  Utilizing local variance of simulated high spatial resolution imagery to predict spatial pattern of forest stands , 2000 .

[6]  P. Richards,et al.  The Tropical Rain Forest: An Ecological Study , 1953 .

[7]  G. Guyot,et al.  Physical measurements and signatures in remote sensing , 1992 .

[8]  F. White,et al.  La végétation de l'Afrique : mémoire accompagnant la carte de végétation de l'Afrique UNESCO/AETFAT/UNSO , 1986 .

[9]  Henry L. Gholz,et al.  The Use of Remote Sensing in the Modeling of Forest Productivity , 1997, Forestry Sciences.

[10]  C. Woodcock,et al.  The use of variograms in remote sensing. I - Scene models and simulated images. II - Real digital images , 1988 .

[11]  P. S. Chavez,et al.  Comparison of spatial variability in visible and near-infrared spectral images , 1992 .

[12]  Paul J. Curran,et al.  Simple size for ground and remotely sensed data , 1986 .

[13]  C. Woodcock,et al.  The factor of scale in remote sensing , 1987 .

[14]  J. Norman,et al.  Instrument for Indirect Measurement of Canopy Architecture , 1991 .

[15]  Josée Lévesque,et al.  Airborne digital camera image semivariance for evaluation of forest structural damage at an acid mine site , 1999 .

[16]  Philip J. Howarth,et al.  High Spatial Resolution Remote Sensing Data for Forest Ecosystem Classification: An Examination of Spatial Scale , 2000 .

[17]  Peter M. Atkinson,et al.  Defining an optimal size of support for remote sensing investigations , 1995, IEEE Trans. Geosci. Remote. Sens..

[18]  P. Curran,et al.  Environmental Remote Sensing From Regional to Global Scales , 1995 .

[19]  Stuart R. Phinn,et al.  Determining forest structural attributes using an inverted geometric-optical model in mixed Eucalypt , 2000 .

[20]  Peter M. Atkinson,et al.  Choosing an appropriate spatial resolution for remote sensing investigations , 1997 .

[21]  M. J. Barnsley,et al.  The relationship between sensor geometry, vegetation-canopy geometry and image variance , 1990 .

[22]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[23]  P. North,et al.  Analyzing the effect of structural variability and canopy gaps on forest BRDF using a geometric-optical model , 1997 .

[24]  H. Hyppänen,et al.  Spatial autocorrelation and optimal spatial resolution of optical remote sensing data in boreal forest environment , 1996 .

[25]  David L.B. Jupp,et al.  Detecting Structural and Growth Changes in Woodlands and Forests: The Challenge for Remote Sensing and the Role of Geometric-Optical Modelling , 1997 .

[26]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[27]  Sylvain G. Leblanc,et al.  A four-scale bidirectional reflectance model based on canopy architecture , 1997, IEEE Trans. Geosci. Remote. Sens..

[28]  B. St-Onge,et al.  Estimating forest stand structure from high resolution imagery using the directional variogram , 1995 .