Invariant mean value property and harmonic functions
暂无分享,去创建一个
We give conditions on the functions and u on [image omitted] such that if u is given by the convolution of and u, then u is harmonic on [image omitted].
[1] W. Rudin,et al. An Invariant Volume-Mean-Value Property , 1993 .
[2] M. Engliš. Functions Invariant under the Berezin Transform , 1994 .
[3] Akira Kaneko. Introduction to hyperfunctions , 1988 .
[4] Soon‐Yeong Chung,et al. Characterizations of the Gelfand-Shilov spaces via Fourier transforms , 1996 .
[5] Integrable Harmonic Functions on Rn , 1997 .
[6] M. W. Wong. An Introduction to Pseudo-Differential Operators , 1991 .