Planar Maps and Continued Fractions

We present an unexpected connection between two map enumeration problems. The first one consists in counting planar maps with a boundary of prescribed length. The second one consists in counting planar maps with two points at a prescribed distance. We show that, in the general class of maps with controlled face degrees, the solution for both problems is actually encoded into the same quantity, respectively via its power series expansion and its continued fraction expansion. We then use known techniques for tackling the first problem in order to solve the second. This novel viewpoint provides a constructive approach for computing the so-called distance-dependent two-point function of general planar maps. We prove and extend some previously predicted exact formulas, which we identify in terms of particular Schur functions.

[1]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[2]  Gilles Schaeffer,et al.  A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..

[3]  Scaling in quantum gravity , 1995, hep-th/9501049.

[4]  Edward A. Bender,et al.  The Number of Degree-Restricted Rooted Maps on the Sphere , 1994, SIAM J. Discret. Math..

[5]  Jérémie Bouttier,et al.  Physique statistique des surfaces aléatoires et combinatoire bijective des cartes planaires , 2005 .

[6]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[7]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[8]  W. G. Brown On the existence of square roots in certain rings of power series , 1965 .

[9]  Integrability of graph combinatorics via random walks and heaps of dimers , 2005, math/0506542.

[10]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[11]  P. Di Francesco,et al.  Geodesic Distance in Planar Graphs: An Integrable Approach , 2005 .

[12]  Christian Krattenthaler,et al.  Lattice Path Proofs for Determinantal Formulas for Symplectic and Orthogonal Characters , 1997, J. Comb. Theory, Ser. A.

[13]  P. Francesco,et al.  Geodesic distance in planar graphs , 2003, cond-mat/0303272.

[14]  G. Parisi,et al.  Planar diagrams , 1978 .

[15]  G. Miermont Random Maps and Their Scaling Limits , 2009 .

[16]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[17]  J. Bouttier,et al.  Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop , 2009, 0906.4892.

[18]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[19]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..

[20]  P. Francesco,et al.  Census of planar maps: From the one-matrix model solution to a combinatorial proof , 2002, cond-mat/0207682.

[21]  W. T. Tutte On the enumeration of planar maps , 1968 .

[22]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[23]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[24]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[25]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[26]  Mireille Bousquet-Mélou,et al.  Polynomial equations with one catalytic variable, algebraic series and map enumeration , 2006, J. Comb. Theory, Ser. B.

[27]  H. Wall,et al.  Analytic Theory of Continued Fractions , 2000 .