The Imaginary Part of the N = 4 Super-Yang-Mills Two-Loop Six-Point MHV Amplitude in Multi-Regge Kinematics

The precise form of the multi-Regge asymptotics of the two-loop six-point MHV amplitude in N = 4 Super-Yang-Mills theory has been a subject of recent controversy. In this paper we utilize the amplitude/Wilson loop correspondence to obtain precise numerical results for the imaginary part of these asymptotics. The region of phase-space that we consider is interesting because it allowed Bartels, Lipatov, and Sabio Vera to determine that the two-loop six-point MHV amplitude is not fixed by the BDS ansatz. They proceeded by working in the framework of a high energy effective action, thus side-stepping the need for an arduous two-loop calculation. Our numerical results are consistent with the predictions of Bartels, Lipatov, and Sabio Vera for the leading-log asymptotics.

[1]  L. Lipatov,et al.  N=4 supersymmetric Yang–Mills scattering amplitudes at high energies: the Regge cut contribution , 2008, 0807.0894.

[2]  G. Korchemsky,et al.  Hexagon Wilson loop = six-gluon MHV amplitude , 2009 .

[3]  R. Brower,et al.  Analyticity for multi-Regge limits of the Bern-Dixon-Smirnov amplitudes , 2008, 0809.1632.

[4]  L. Lipatov,et al.  BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes , 2008, 0802.2065.

[5]  R. Brower,et al.  Implications of multi-Regge limits for the Bern-Dixon-Smirnov conjecture , 2008, 0801.3891.

[6]  F. Cachazo,et al.  Brown-HET-1551 Leading Singularities of the Two-Loop Six-Particle MHV Amplitude , 2009 .

[7]  C. Duhr,et al.  Iterated amplitudes in the high-energy limit , 2008, 0809.1822.

[8]  C. Vergu Twistors, strings and supersymmetric gauge theories , 2008, 0809.1807.

[9]  R. Ricci,et al.  Dual superconformal symmetry from AdS5xS5 superstring integrability , 2008, 0807.3228.

[10]  J. Maldacena,et al.  Fermionic T-Duality, Dual Superconformal Symmetry, and the Amplitude/Wilson Loop Connection , 2008, 0807.3196.

[11]  F. Cachazo,et al.  Leading singularities of the two-loop six-particle maximally helicity violating amplitude , 2008, 0805.4832.

[12]  L. Dixon,et al.  Universal structure of subleading infrared poles in gauge theory amplitudes , 2008, 0805.3515.

[13]  G. Korchemsky,et al.  On planar gluon amplitudes/Wilson loops duality , 2007, 0709.2368.

[14]  P. Heslop,et al.  MHV amplitudes in N=4 super Yang-Mills and Wilson loops , 2007, 0707.1153.

[15]  G. Korchemsky,et al.  Conformal properties of four-gluon planar amplitudes and Wilson loops , 2007, 0707.0243.

[16]  J. Maldacena,et al.  Comments on gluon scattering amplitudes via AdS/CFT , 2007, 0710.1060.

[17]  J. Maldacena,et al.  Gluon scattering amplitudes at strong coupling , 2007, 0705.0303.

[18]  M. Czakon,et al.  Two-loop iteration of five-point N=4 super-Yang-Mills amplitudes. , 2006, Physical review letters.

[19]  F. Cachazo,et al.  Iterative structure within the five-particle two-loop amplitude , 2006, hep-th/0602228.

[20]  L. Dixon,et al.  Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond , 2005, hep-th/0505205.

[21]  S. Weinzierl,et al.  Automated computation of one-loop integrals in massless theories , 2005, hep-ph/0502165.

[22]  L. Dixon,et al.  Planar amplitudes in maximally supersymmetric Yang-Mills theory. , 2003, Physical review letters.

[23]  L. Dixon,et al.  Dimensionally regulated one-loop integrals , 1992, hep-ph/9212308.

[24]  Taylor,et al.  Amplitude for n-gluon scattering. , 1986, Physical review letters.

[25]  R. Kumar COVARIANT PHASE-SPACE CALCULATIONS OF n-BODY DECAY AND PRODUCTION PROCESSES. , 1969 .