Simultaneous estimation of cortical activity during social interactions by using EEG hyperscannings

In this paper we show how the possibility of recording simultaneously the cerebral neuroelectric activity in different subjects (EEG hyperscanning) during the execution of different tasks could return useful information about the “internal” cerebral state of the subjects. We present the results obtained by EEG hyperscannings during ecological task (such as the execution of a card game) as well as that obtained in a series of couples of subjects during the performance of the Prisoner's Dilemma Game. The simultaneous recordings of couples of interacting subjects allows to observe and to model directly the neural signature of human interactions in order to understand the cerebral processes generating and generated by social cooperation or competition. Results obtained in a study of different groups recorded during the card game revealed a larger activity in prefrontal and anterior cingulated cortex in different frequency bands for the player that leads the game when compared to other players. Results collected in a population of 10 subjects during the performance of the Prisoner's Dilemma suggested that the most consistently activated structure is the orbitofrontal region (roughly described by the Brodmann area 10) during the condition of competition in both the tasks. It could be speculated whether the pattern of cortical connectivity between different cortical areas in different subjects could be employed as a tool for assessing the outcome of the task in advance.

[1]  F Cincotti,et al.  Integration of High Resolution EEG and Functional Magnetic Resonance in the Study of Human Movement-Related Potentials , 2000, Methods of Information in Medicine.

[2]  Bin He,et al.  Estimating cortical potentials from scalp EEG's in a realistically shaped inhomogeneous head model by means of the boundary element method. , 1999, IEEE transactions on bio-medical engineering.

[3]  S. Quartz,et al.  Getting to Know You: Reputation and Trust in a Two-Person Economic Exchange , 2005, Science.

[4]  G. A. Miller,et al.  Comparison of different cortical connectivity estimators for high‐resolution EEG recordings , 2007, Human brain mapping.

[5]  A. Urbano,et al.  Dynamic functional coupling of high resolution EEG potentials related to unilateral internally triggered one-digit movements. , 1998, Electroencephalography and clinical neurophysiology.

[6]  Mukesh Dhamala,et al.  Hyperscanning : Simultaneous fMRI during Linked Social Interactions , 2001 .

[7]  A Urbano,et al.  Human short latency cortical responses to somatosensory stimulation. A high resolution EEG study , 1997, Neuroreport.

[8]  F. Babiloni,et al.  Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function , 2005, NeuroImage.

[9]  Luiz A. Baccalá,et al.  Partial directed coherence: a new concept in neural structure determination , 2001, Biological Cybernetics.

[10]  Laura Astolfi,et al.  Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle. , 2004, Magnetic resonance imaging.

[11]  C. Babiloni,et al.  Influence of the supplementary motor area on primary motor cortex excitability during movements triggered by neutral or emotionally unpleasant visual cues , 2003, Experimental Brain Research.