A 1.1-Gbit/s 10-GHz Outphasing Modulator With 23-dBm Output Power and 60-dB Dynamic Range in 45-nm CMOS SOI

A 10-GHz outphasing modulator is implemented in a 45-nm CMOS silicon-on-insulator process. The modulator is designed to provide high linearity and can operate at high data rates by using 256-QAM while maintaining low error vector magnitude (EVM). Four high-speed 10-bit digital-to-analog converters (DACs) are integrated with dual in-phase and quadrature upconverters. To deliver high output power to an off-chip power amplifier, stacked field-effect transistor current buffers are used to isolate the modulator from the load and mitigate device breakdown. As a result, this modulator delivers 23 dBm to a differential 100- Ω load. The high-resolution DACs provide a fine control of the phase between the outphased signals and support more than 60 dB of dynamic range and power steps smaller than 1 dB over the entire output power range. The outphasing modulator demonstrates an EVM of 2.2% at 80 Mbit/s and an EVM of 3.4% at 1.1 Gbit/s for 256-QAM. To our knowledge, this is the first demonstration of an outphasing modulator operating above 1 Gb/s.

[1]  Chi-Hung Lin,et al.  A 12 bit 2.9 GS/s DAC With IM3 $ ≪ -$60 dBc Beyond 1 GHz in 65 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[2]  P. Reynaert,et al.  A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE , 2005, IEEE Journal of Solid-State Circuits.

[3]  Dongsu Kim,et al.  Analysis of Envelope-Tracking Power Amplifier Using Mathematical Modeling , 2014, IEEE Transactions on Microwave Theory and Techniques.

[4]  H. Chireix High Power Outphasing Modulation , 1935, Proceedings of the Institute of Radio Engineers.

[5]  R. Kaunisto,et al.  A 2.14-GHz Chireix outphasing transmitter , 2005, IEEE Transactions on Microwave Theory and Techniques.

[6]  Feipeng Wang,et al.  A Monolithic High-Efficiency 2.4-GHz 20-dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier , 2007, IEEE Journal of Solid-State Circuits.

[7]  Bertan Bakkaloglu,et al.  A 10 MHz Bandwidth, 2 mV Ripple PA Regulator for CDMA Transmitters , 2008, IEEE Journal of Solid-State Circuits.

[8]  Michiel Steyaert,et al.  A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter , 2001 .

[9]  Jinsung Choi,et al.  A Polar Transmitter With CMOS Programmable Hysteretic-Controlled Hybrid Switching Supply Modulator for Multistandard Applications , 2009, IEEE Transactions on Microwave Theory and Techniques.

[10]  M. Steyaert,et al.  A 130 nm CMOS 6-bit Full Nyquist 3 GS/s DAC , 2007, IEEE Journal of Solid-State Circuits.

[11]  A Mortazawi,et al.  Adaptive Input-Power Distribution in Doherty Power Amplifiers for Linearity and Efficiency Enhancement , 2010, IEEE Transactions on Microwave Theory and Techniques.

[12]  Peter M. Asbeck,et al.  Design of a 4-W Envelope Tracking Power Amplifier With More Than One Octave Carrier Bandwidth , 2012, IEEE Journal of Solid-State Circuits.

[13]  Behzad Razavi,et al.  Transmitter Linearization by Beamforming , 2011, IEEE Journal of Solid-State Circuits.

[14]  J. F. Buckwalter,et al.  Linearity Considerations for Low-EVM, Millimeter-Wave Direct-Conversion Modulators , 2012, IEEE Transactions on Microwave Theory and Techniques.

[15]  W.H. Doherty,et al.  A New High Efficiency Power Amplifier for Modulated Waves , 1936, Proceedings of the Institute of Radio Engineers.

[16]  F.M. Ghannouchi,et al.  Synergetic Crest Factor Reduction and Baseband Digital Predistortion for Adaptive 3G Doherty Power Amplifier Linearizer Design , 2008, IEEE Transactions on Microwave Theory and Techniques.

[17]  F.M. Ghannouchi,et al.  Design Optimization and DPD Linearization of GaN-Based Unsymmetrical Doherty Power Amplifiers for 3G Multicarrier Applications , 2009, IEEE Transactions on Microwave Theory and Techniques.

[18]  Ockgoo Lee,et al.  Multi-level LINC transmitter with non-isolated power combiner , 2013 .

[19]  SungWon Chung,et al.  A 2.4-GHz, 27-dBm Asymmetric Multilevel Outphasing Power Amplifier in 65-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[20]  Slim Boumaiza,et al.  Doherty Power Amplifier With Enhanced Efficiency at Extended Operating Average Power Levels , 2013, IEEE Transactions on Microwave Theory and Techniques.

[21]  S. Moloudi,et al.  The Outphasing RF Power Amplifier: A Comprehensive Analysis and a Class-B CMOS Realization , 2013, IEEE Journal of Solid-State Circuits.

[22]  S. Carichner,et al.  An Improved Doherty Amplifier Using Cascaded Digital Predistortion and Digital Gate Voltage Enhancement , 2009, IEEE Transactions on Microwave Theory and Techniques.

[23]  James F. Buckwalter,et al.  A 10 bit, 300 MS/s Nyquist Current-Steering Power DAC With 6 V$_{\rm PP}$ Output Swing , 2014, IEEE Journal of Solid-State Circuits.

[24]  Patrick Reynaert,et al.  A 60-GHz Outphasing Transmitter in 40-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[25]  Yorgos Palaskas,et al.  A 2.4-GHz 20–40-MHz Channel WLAN Digital Outphasing Transmitter Utilizing a Delay-Based Wideband Phase Modulator in 32-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[26]  N. Wongkomet,et al.  A $+$31.5 dBm CMOS RF Doherty Power Amplifier for Wireless Communications , 2006, IEEE Journal of Solid-State Circuits.

[27]  D. Kimball,et al.  Wideband envelope elimination and restoration power amplifier with high efficiency wideband envelope amplifier for WLAN 802.11g applications , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[28]  Michiel Steyaert,et al.  A 130 nm CMOS 6-bit full nyquist 3GS/s DAC , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[29]  F. Murden,et al.  A polar modulator transmitter for GSM/EDGE , 2004, IEEE Journal of Solid-State Circuits.

[30]  Jinsung Choi,et al.  Optimized Envelope Tracking Operation of Doherty Power Amplifier for High Efficiency Over an Extended Dynamic Range , 2009, IEEE Transactions on Microwave Theory and Techniques.

[31]  Yu Lin,et al.  A 12 bit 2.9 GS/s DAC With IM3 $ ≪ -$60 dBc Beyond 1 GHz in 65 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.