Geometric measure of entanglement for symmetric states
暂无分享,去创建一个
O. Gühne | R. Hubener | M. Kleinmann | T. Wei | C. Gonz'alez-Guill'en | O. Guhne | C. González-Guillén | R. Hübener
[1] Teiji Takagi,et al. On an Algebraic Problem Reluted to an Analytic Theorem of Carathéodory and Fejér and on an Allied Theorem of Landau , 1924 .
[2] O. D. Kellogg. On bounded polynomials in several variables , 1928 .
[3] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .
[4] Erling HÖrmander. On a theorem of Grace , 1954 .
[5] Chanchal K. Majumdar,et al. On Next‐Nearest‐Neighbor Interaction in Linear Chain. II , 1969 .
[6] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[7] B. M. Fulk. MATH , 1992 .
[8] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[9] Seán Dineen,et al. Complex Analysis on Infinite Dimensional Spaces , 1999 .
[10] Terhal,et al. Entanglement of formation for isotropic states , 2000, Physical review letters.
[11] R. Werner,et al. Counterexample to an additivity conjecture for output purity of quantum channels , 2002, quant-ph/0203003.
[12] C. Caves,et al. Concurrence-based entanglement measures for isotropic states , 2003 .
[13] P. Goldbart,et al. Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.
[14] Tzu-Chieh Wei,et al. Global entanglement and quantum criticality in spin chains , 2005 .
[15] M. Murao,et al. Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. , 2005, Physical review letters.
[16] A. Uhlmann,et al. Entangled three-qubit states without concurrence and three-tangle. , 2006, Physical review letters.
[17] Martin B. Plenio,et al. An introduction to entanglement measures , 2005, Quantum Inf. Comput..
[18] Damian Markham,et al. Entanglement and local information access for graph states , 2007 .
[19] Román Orús,et al. Universal geometric entanglement close to quantum phase transitions. , 2007, Physical review letters.
[20] DaeKil Park,et al. Analytic expressions for geometric measure of three-qubit states , 2008 .
[21] G. Tóth,et al. Entanglement detection , 2008, 0811.2803.
[22] R. Orús,et al. Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model. , 2008, Physical review letters.
[23] M. Blaauboer,et al. Multiparticle entanglement under the influence of decoherence , 2008, 0805.2873.
[24] Tzu-Chieh Wei. Relative entropy of entanglement for multipartite mixed states: Permutation-invariant states and Dür states , 2008 .
[25] Damian Markham,et al. Thermal robustness of multipartite entanglement of the 1-D spin 1/2 XY model , 2008 .
[26] D. Gross,et al. Most quantum States are too entangled to be useful as computational resources. , 2008, Physical review letters.
[27] M. B. Plenio,et al. Entanglement of multiparty stabilizer, symmetric, and antisymmetric states , 2007, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.
[28] Andreas Winter,et al. Are random pure States useful for quantum computation? , 2008, Physical review letters.
[29] Entanglement and permutational symmetry. , 2008, Physical review letters.
[30] A. Defant,et al. Tensor Norms and Operator Ideals , 2011 .
[31] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.