Geometric measure of entanglement for symmetric states

Is the closest product state to a symmetric entangled multiparticle state also symmetric? This question has appeared in the recent literature concerning the geometric measure of entanglement. First, we show that a positive answer can be derived from results concerning symmetric multilinear forms and homogeneous polynomials, implying that the closest product state can be chosen to be symmetric. We then prove the stronger result that the closest product state to any symmetric multiparticle quantum state is necessarily symmetric. Moreover, we discuss generalizations of our result and the case of translationally invariant states, which can occur in spin models.

[1]  Teiji Takagi,et al.  On an Algebraic Problem Reluted to an Analytic Theorem of Carathéodory and Fejér and on an Allied Theorem of Landau , 1924 .

[2]  O. D. Kellogg On bounded polynomials in several variables , 1928 .

[3]  G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .

[4]  Erling HÖrmander On a theorem of Grace , 1954 .

[5]  Chanchal K. Majumdar,et al.  On Next‐Nearest‐Neighbor Interaction in Linear Chain. II , 1969 .

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  B. M. Fulk MATH , 1992 .

[8]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[9]  Seán Dineen,et al.  Complex Analysis on Infinite Dimensional Spaces , 1999 .

[10]  Terhal,et al.  Entanglement of formation for isotropic states , 2000, Physical review letters.

[11]  R. Werner,et al.  Counterexample to an additivity conjecture for output purity of quantum channels , 2002, quant-ph/0203003.

[12]  C. Caves,et al.  Concurrence-based entanglement measures for isotropic states , 2003 .

[13]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[14]  Tzu-Chieh Wei,et al.  Global entanglement and quantum criticality in spin chains , 2005 .

[15]  M. Murao,et al.  Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. , 2005, Physical review letters.

[16]  A. Uhlmann,et al.  Entangled three-qubit states without concurrence and three-tangle. , 2006, Physical review letters.

[17]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[18]  Damian Markham,et al.  Entanglement and local information access for graph states , 2007 .

[19]  Román Orús,et al.  Universal geometric entanglement close to quantum phase transitions. , 2007, Physical review letters.

[20]  DaeKil Park,et al.  Analytic expressions for geometric measure of three-qubit states , 2008 .

[21]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[22]  R. Orús,et al.  Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model. , 2008, Physical review letters.

[23]  M. Blaauboer,et al.  Multiparticle entanglement under the influence of decoherence , 2008, 0805.2873.

[24]  Tzu-Chieh Wei Relative entropy of entanglement for multipartite mixed states: Permutation-invariant states and Dür states , 2008 .

[25]  Damian Markham,et al.  Thermal robustness of multipartite entanglement of the 1-D spin 1/2 XY model , 2008 .

[26]  D. Gross,et al.  Most quantum States are too entangled to be useful as computational resources. , 2008, Physical review letters.

[27]  M. B. Plenio,et al.  Entanglement of multiparty stabilizer, symmetric, and antisymmetric states , 2007, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[28]  Andreas Winter,et al.  Are random pure States useful for quantum computation? , 2008, Physical review letters.

[29]  Entanglement and permutational symmetry. , 2008, Physical review letters.

[30]  A. Defant,et al.  Tensor Norms and Operator Ideals , 2011 .

[31]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.