Efficient predictive estimator for holdover in GPS-based clock synchronization

This paper addresses an unbiased p-step predictive finite impulse response (FIR) filter of the local clock K-degree time interval error (TIE) polynomial model with applications to the global positioning system (GPS)-based clock synchronization. Generic coefficients are derived for a 2-parameter family of the polynomial filter gains. A generalization is provided for the p-step linear (ramp) gain allowing for close to optimal predictive filtering of the TIE. Basic holdover algorithms are discussed along with their most critical properties. Efficiency of the proposed filter in holdover is demonstrated by simulation and in real applications to GPS-based (sawtooth and sawtoothless) measurements of the TIE of a crystal clock.

[1]  Charles A Greenhall Kalman Plus Weights: A Time Scale Algorithm , 2001 .

[2]  G. Busca,et al.  Time prediction accuracy for a space clock , 2003 .

[3]  R. M. Garvey,et al.  A redundant timing source for digital telecommunication network synchronization , 1990, 44th Annual Symposium on Frequency Control.

[4]  N. F. Toda,et al.  Divergence in the Kalman Filter , 1967 .

[5]  Shouhong Zhu Optimum precise-clock prediction and its applications , 1997, Proceedings of International Frequency Control Symposium.

[6]  J. W. Pan Present and Future of Synchronization in the US Telephone Network , 1987, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  Wook Hyun Kwon,et al.  A receding horizon unbiased FIR filter for discrete-time state space models , 2002, Autom..

[8]  J. Levine,et al.  Time synchronization over the Internet using an adaptive frequency-locked loop , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  A. Lepek Clock prediction and characterization , 1997 .

[10]  John Evans,et al.  Use of the NAVSTAR Global Positioning System (GPS) in the Defense Communications System (DCS) , 1993, 1993 IEEE International Frequency Control Symposium.

[11]  W. Kwon,et al.  Receding Horizon Control: Model Predictive Control for State Models , 2005 .

[12]  G. Xiao,et al.  Fault Detection and Prediction of Clocks and Timers Based on Computer Audition and Probabilistic Neural Networks , 2005, IWANN.

[13]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[14]  Andrew G. Dempster,et al.  Proposal for a Novel Remote Synchronization System for the On-Board Crystal Oscillator of the Quasi-Zenith Satellite System , 2006 .

[15]  S. R. Stein,et al.  Kalman filter analysis for real time applications of clocks and oscillators , 1988, Proceedings of the 42nd Annual Frequency Control Symposium, 1988..

[16]  Xiaohong Jiang,et al.  Statistical skew modeling for general clock distribution networks in presence of process variations , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[17]  Seppo J. Ovaska,et al.  Polynomial predictive filtering in control instrumentation: a review , 1999, IEEE Trans. Ind. Electron..

[18]  Michitaka Kosaka Evaluation method of polynomial models' prediction performance for random clock error , 1987 .

[19]  Andrew G. Dempster,et al.  Simulation and Ground Experiments of Remote Synchronization System for Onboard Crystal Oscillator of Quasi‐Zenith Satellite , 2006 .

[20]  Wook Hyun Kwon,et al.  A receding horizon Kalman FIR filter for discrete time-invariant systems , 1999, IEEE Trans. Autom. Control..

[21]  Yrjö Neuvo,et al.  FIR-median hybrid filters with predictive FIR substructures , 1988, IEEE Trans. Acoust. Speech Signal Process..

[22]  J. R. Norton,et al.  Long-term performance of precision crystal oscillators in a near-Earth orbital environment , 1993 .

[23]  Y. Shmaliy,et al.  An Analysis of Sawtooth Noise in the Timing SynPaQ III GPS Sensor , 2007 .

[24]  Y. Shmaliy The modulational method of quartz crystal oscillator frequency stabilization , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  Laurent-Guy Bernier Use of the Allan deviation and linear prediction for the determination of the uncertainty on time calibrations against predicted timescales , 2003, IEEE Trans. Instrum. Meas..

[26]  D. W. Allan,et al.  Stochastic models for atomic clocks , 1983 .

[27]  Kent R. Johnson,et al.  Optimum, linear, discrete filtering of signals containing a nonrandom component , 1956, IRE Trans. Inf. Theory.

[28]  Y.S. Shmaliy,et al.  An unbiased FIR filter for TIE model of a local clock in applications to GPS-based timekeeping , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  Wook Hyun Kwon,et al.  FIR filters and recursive forms for discrete-time state-space models , 1987, Autom..

[30]  T. G. Campbell,et al.  Predictive FIR filters with low computational complexity , 1991 .

[31]  Y.S. Shmaliy A simple optimally unbiased MA filter for timekeeping , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[32]  J. Delporte,et al.  Uncertainties of drift coefficients and extrapolation errors: application to clock error prediction , 2001 .

[33]  J. Dellas,et al.  The use of GPS (Global Positioning System) for synchronizing frequency converters , 2001, Proceedings of the 2001 IEEE/ASME Joint Railroad Conference (Cat. No.01CH37235).

[34]  A. V. Savchuk,et al.  GPS-Based Optimal Kalman Estimation of Time Error, Frequency Offset, and Aging , 1999 .