Spectral deviation of concentration operators for the short-time Fourier transform
暂无分享,去创建一个
[1] L. Coburn. The Bargmann isometry and Gabor-Daubechies wavelet localization operators , 2001 .
[2] A. Sobolev. Quasi-classical asymptotics for functions of Wiener–Hopf operators: smooth versus non-smooth symbols , 2016, 1609.02068.
[3] Stevan Pilipović,et al. Wilson Bases and Ultramodulation Spaces , 2002 .
[4] Karlheinz Gröchenig,et al. LOCALIZATION OPERATORS AND TIME-FREQUENCY ANALYSIS , 2005 .
[5] G. Zimmermann,et al. Spaces of Test Functions via the STFT , 2004 .
[6] Stephanie Koch,et al. Harmonic Analysis In Phase Space , 2016 .
[7] David G. Caraballo. Areas of level sets of distance functions induced by asymmetric norms , 2005 .
[8] Ingrid Daubechies,et al. Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.
[9] H. Feichtinger,et al. A Szegő-type theorem for Gabor-Toeplitz localization operators , 2001 .
[10] Erwin,et al. Ultradistributions and Time-Frequency Analysis , 2006 .
[11] M. Engliš. Toeplitz operators and localization operators , 2008 .
[12] A. Sobolev. Pseudo-Differential Operators With Discontinuous Symbols: Widom's Conjecture , 2013 .
[13] J. Oldfield. Two-term Szeg\H{o} theorem for generalised anti-Wick operators , 2014, 1404.2256.
[14] Arie Israel. The Eigenvalue Distribution of Time-Frequency Localization Operators , 2015, 1502.04404.
[15] Pankaj Topiwala,et al. Time–Frequency Localization and the Spectrogram , 1994 .
[16] K. Gröchenig,et al. Hardy's Theorem and the Short‐Time Fourier Transform of Schwartz Functions , 2001 .
[17] Hans G. Feichtinger,et al. Uniform Eigenvalue Estimates for Time‐Frequency Localization Operators , 2002 .
[18] Christina Gloeckner. Foundations Of Time Frequency Analysis , 2016 .
[19] K. Okoudjou,et al. Modulation Spaces , 2020 .
[20] Kehe Zhu. Operator theory in function spaces , 1990 .
[21] L. Evans. Measure theory and fine properties of functions , 1992 .
[22] J. Toft. Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes , 2017 .
[23] K. Grōchenig,et al. On accumulated spectrograms , 2014, 1404.7713.
[24] Standard Deviation and Schatten Class Hankel Operators on the Segal-Bargmann Space , 2004 .