Spectral deviation of concentration operators for the short-time Fourier transform

Abstract. Time-frequency concentration operators restrict the integral analysis-synthesis formula for the short-time Fourier transform to a given compact domain. We estimate how much the corresponding eigenvalue counting function deviates from the Lebesgue measure of the time-frequency domain. For window functions in the Gelfand-Shilov class, the bounds approximately match known asymptotics. We also consider window functions that decay only polynomially in time and frequency.

[1]  L. Coburn The Bargmann isometry and Gabor-Daubechies wavelet localization operators , 2001 .

[2]  A. Sobolev Quasi-classical asymptotics for functions of Wiener–Hopf operators: smooth versus non-smooth symbols , 2016, 1609.02068.

[3]  Stevan Pilipović,et al.  Wilson Bases and Ultramodulation Spaces , 2002 .

[4]  Karlheinz Gröchenig,et al.  LOCALIZATION OPERATORS AND TIME-FREQUENCY ANALYSIS , 2005 .

[5]  G. Zimmermann,et al.  Spaces of Test Functions via the STFT , 2004 .

[6]  Stephanie Koch,et al.  Harmonic Analysis In Phase Space , 2016 .

[7]  David G. Caraballo Areas of level sets of distance functions induced by asymmetric norms , 2005 .

[8]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[9]  H. Feichtinger,et al.  A Szegő-type theorem for Gabor-Toeplitz localization operators , 2001 .

[10]  Erwin,et al.  Ultradistributions and Time-Frequency Analysis , 2006 .

[11]  M. Engliš Toeplitz operators and localization operators , 2008 .

[12]  A. Sobolev Pseudo-Differential Operators With Discontinuous Symbols: Widom's Conjecture , 2013 .

[13]  J. Oldfield Two-term Szeg\H{o} theorem for generalised anti-Wick operators , 2014, 1404.2256.

[14]  Arie Israel The Eigenvalue Distribution of Time-Frequency Localization Operators , 2015, 1502.04404.

[15]  Pankaj Topiwala,et al.  Time–Frequency Localization and the Spectrogram , 1994 .

[16]  K. Gröchenig,et al.  Hardy's Theorem and the Short‐Time Fourier Transform of Schwartz Functions , 2001 .

[17]  Hans G. Feichtinger,et al.  Uniform Eigenvalue Estimates for Time‐Frequency Localization Operators , 2002 .

[18]  Christina Gloeckner Foundations Of Time Frequency Analysis , 2016 .

[19]  K. Okoudjou,et al.  Modulation Spaces , 2020 .

[20]  Kehe Zhu Operator theory in function spaces , 1990 .

[21]  L. Evans Measure theory and fine properties of functions , 1992 .

[22]  J. Toft Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes , 2017 .

[23]  K. Grōchenig,et al.  On accumulated spectrograms , 2014, 1404.7713.

[24]  Standard Deviation and Schatten Class Hankel Operators on the Segal-Bargmann Space , 2004 .