Representation theory and homological stability

Abstract We introduce the idea of representation stability (and several variations) for a sequence of representations V n of groups G n . A central application of the new viewpoint we introduce here is the importation of representation theory into the study of homological stability. This makes it possible to extend classical theorems of homological stability to a much broader variety of examples. Representation stability also provides a framework in which to find and to predict patterns, from classical representation theory (Littlewood–Richardson and Murnaghan rules, stability of Schur functors), to cohomology of groups (pure braid, Torelli and congruence groups), to Lie algebras and their homology, to the (equivariant) cohomology of flag and Schubert varieties, to combinatorics (the ( n + 1 ) n − 1 conjecture). The majority of this paper is devoted to exposing this phenomenon through examples. In doing this we obtain applications, theorems and conjectures. Beyond the discovery of new phenomena, the viewpoint of representation stability can be useful in solving problems outside the theory. In addition to the applications given in this paper, it is applied by Church–Ellenberg–Farb (in preparation)  [20] to counting problems in number theory and finite group theory. Representation stability is also used by Church (2012)  [19] to give broad generalizations and new proofs of classical homological stability theorems for configuration spaces on oriented manifolds.

[1]  Permutation representations on Schubert varieties , 2006, math/0604578.

[2]  A. Ash Galois representations attached to $\mod p$ cohomology of $GL(n,\mathbb{Z})$ , 1992 .

[3]  P. Tirao,et al.  The cohomology of the cotangent bundle of Heisenberg groups , 2004 .

[4]  M. Emerton,et al.  Hecke Operators on Stable Cohomology , 2013, 1311.5183.

[5]  Stability in the homology of congruence subgroups , 2012, 1201.4876.

[6]  I͡u. A. Bakhturin Identical Relations in Lie Algebras , 1986 .

[7]  Andrew Snowden,et al.  Syzygies of Segre embeddings and $\Delta$-modules , 2010, 1006.5248.

[8]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[9]  Jenny Wilson FI_W-modules and stability criteria for representations of the classical Weyl groups , 2013, 1309.3817.

[10]  Vladimir I. Arnold The cohomology ring of the colored braid group , 1969 .

[11]  Richard P. Stanley,et al.  Some Aspects of Groups Acting on Finite Posets , 1982, J. Comb. Theory, Ser. A.

[12]  John R. Stembridge,et al.  ON THE EIGENVALUES OF REPRESENTATIONS OF REFLECTION GROUPS AND WREATH PRODUCTS , 1989 .

[13]  Structure of the mapping class groups of surfaces: a survey and a prospect , 1999, math/9911258.

[14]  A. O. Morris YOUNG TABLEAUX: WITH APPLICATIONS TO REPRESENTATION THEORY AND GEOMETRY (LMS Student Texts 35) By William Fulton: 260 pp., £14.95 (LMS Members' price £11.20), ISBN 0 521 56724 6 (Cambridge University Press, 1997) , 1998 .

[15]  Andrew Putman The Picard group of the moduli space of curves with level structures , 2009, 0908.0555.

[16]  B. Farb,et al.  Parameterized Abel–Jacobi maps and abelian cycles in the Torelli group , 2010, 1001.1114.

[17]  C. Reutenauer Free Lie Algebras , 1993 .

[18]  P. Hanlon On the Complete GL(n, C)-Decomposition of the Stable Cohomology of gl n (A) , 1988 .

[19]  On the cohomology of an arrangement of type B1 , 1992 .

[20]  John Labute,et al.  On the descending central series of groups with a single defining relation , 1970 .

[21]  Nariya Kawazumi COHOMOLOGICAL ASPECTS OF MAGNUS EXPANSIONS. , 2005, math/0505497.

[22]  Vladimir I. Arnold,et al.  The cohomology ring of the colored braid group , 1969 .

[23]  M. Falk The minimal model of the complement of an arrangement of hyperplanes , 1988 .

[24]  Dennis Johnson,et al.  The structure of the Torelli group I : A finite set of generators for J , 1983 .

[25]  Meinolf Geck,et al.  Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras , 2000 .

[26]  R. Hain Infinitesimal presentations of the Torelli groups , 1995, alg-geom/9512001.

[27]  D. L. Johnson,et al.  The structure of the Torelli group—III: The abelianization of I , 1985 .

[28]  S. Morita Geometry Of Characteristic Classes , 2001 .

[29]  R. Carter,et al.  Modular representations of finite groups of Lie type , 1976 .

[30]  P. Orlik,et al.  Combinatorics and topology of complements of hyperplanes , 1980 .

[31]  Steven V. Sam,et al.  Introduction to twisted commutative algebras , 2012, 1209.5122.

[32]  F. Murnaghan The Analysis of the Kronecker Product of Irreducible Representations of the Symmetric Group , 1938 .

[33]  Rita Jiménez Rolland Representation stability for the cohomology of the moduli space ℳgn , 2011, 1106.0947.

[34]  Jordan S. Ellenberg,et al.  FI-modules and stability for representations of symmetric groups , 2012, 1204.4533.

[35]  Haniya Azam,et al.  Representation Stability of Power Sets and Square Free Polynomials , 2011, Canadian Journal of Mathematics.

[36]  J. Ellenberg,et al.  FI-modules over Noetherian rings , 2012, 1210.1854.

[37]  J. Meier,et al.  The integral cohomology of the group of loops , 2006, 0903.0140.

[38]  I. Madsen,et al.  The stable moduli space of Riemann surfaces: Mumford's conjecture , 2002, math/0212321.

[39]  P. Hanlon On the complete (,)-decomposition of the stable cohomology of _{}() , 1988 .

[40]  Søren Galatius Stable homology of automorphism groups of free groups , 2006, math/0610216.

[41]  D. L. Johnson A survey of the Torelli group , 1983 .

[42]  R. Green CHARACTERS OF FINITE COXETER GROUPS AND IWAHORI–HECKE ALGEBRAS (London Mathematical Society Monographs: New Series 21) By MEINOLF GECK and GÖTZ PFEIFFER: 446 pp., £65.00 (LMS members' price £45.50), ISBN 0-19-850250-8 (Clarendon Press, Oxford, 2000). , 2001 .

[43]  S. Boldsen,et al.  Towards representation stability for the second homology of the Torelli group , 2011, 1101.5767.

[44]  Gregory Margulis,et al.  Discrete Subgroups of Semisimple Lie Groups , 1991 .

[45]  Daniel Moseley Group Actions on Hyperplane Arrangements , 2012 .

[46]  Emmanuel Briand,et al.  The stability of the Kronecker product of Schur functions , 2010 .

[47]  On the Steinberg Character of a Finite Simple Group of Lie Type , 1971 .

[48]  P. Tirao,et al.  The Adjoint Homology of the Free 2‐Step Nilpotent Lie Algebra , 2002 .

[49]  Jenny Wilson Representation stability for the cohomology of the pure string motion groups , 2011, 1108.1255.

[50]  David J. Hemmer Stable decompositions for some symmetric group characters arising in braid group cohomology , 2011, J. Comb. Theory, Ser. A.

[51]  R. Macpherson Permutation Representations on Schubert Varieties , 2007 .

[52]  Ruth Charney On the problem of homology stability for congruence subgroups , 1984 .

[53]  G. Mess The Torelli groups for genus 2 and 3 surfaces , 1992 .

[54]  K. Roberts,et al.  Thesis , 2002 .

[55]  A. Borel Sur La Cohomologie des Espaces Fibres Principaux et des Espaces Homogenes de Groupes de Lie Compacts , 1953 .

[56]  Thomas Church Homological stability for configuration spaces of manifolds , 2011, 1103.2441.

[57]  Stability of Schur Functors , 1997 .

[58]  N. Habegger,et al.  AN INFINITESIMAL PRESENTATION OF THE TORELLI GROUP OF A SURFACE WITH BOUNDARY NATHAN HABEGGER AND CHRISTOPH SORGER , 2007 .

[59]  S. Morita On the structure and the homology of the Torelli group , 1989 .

[60]  Dimension of the Torelli group for Out(Fn) , 2006, math/0603177.

[61]  Torelli Groups and Geometry of Moduli Spaces of Curves , 1994, alg-geom/9403015.

[62]  On the homology of free nilpotent Lie algebras. , 2002 .

[63]  Louis Solomon,et al.  On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes , 1986 .

[64]  R. H. Szczarba,et al.  On the homology and cohomology of congruence subgroups , 1976 .

[65]  G. Lehrer Coxeter Group Actions on the Cohomology of Toric Varieties , 2008 .

[66]  Rita Jiménez Rolland On the cohomology of pure mapping class groups as FI-modules , 2012, 1207.6828.

[67]  R. Cohen Stability phenomena in the topology of moduli spaces , 2009, 0908.1938.

[68]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[69]  G. Hogeweij Almost-classical Lie algebras. II , 1982 .

[70]  K. Nomizu On the Cohomology of Compact Homogeneous Spaces of Nilpotent Lie Groups , 1954 .

[71]  A. Borel Density Properties for Certain Subgroups of Semi-Simple Groups Without Compact Components , 1960 .

[72]  Mark Haiman,et al.  Combinatorics, symmetric functions, and Hilbert schemes , 2002 .

[73]  Toshitake Kohao Série de Poincaré-Koszul associée aux groupes de tresses pures , 1985 .

[74]  Steven V. Sam,et al.  STABILITY PATTERNS IN REPRESENTATION THEORY , 2013, Forum of Mathematics, Sigma.

[75]  Moritz Beckmann,et al.  Young tableaux , 2007 .

[76]  Hyman Bass,et al.  Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2) , 1967 .

[77]  D. Margalit,et al.  THE DIMENSION OF THE TORELLI GROUP , 2007, 0709.0287.

[78]  Egbert Brieskorn,et al.  Sur les groupes de tresses [d'après V. I. Arnol'd] , 1973 .

[79]  Free Lie algebras,et al.  Free Lie algebras , 2015 .

[80]  V. Vershinin Braid groups and loop spaces , 1999 .

[81]  R. Brylinski Stable calculus of the mixed tensor character I , 1989 .