Coin flipping of any constant bias implies one-way functions

We show that the existence of a coin-flipping protocol safe against any non-trivial constant bias (e.g., .499) implies the existence of one-way functions. This improves upon a recent result of Haitner and Omri [FOCS '11], who proved this implication for protocols with bias [EQUATION] -- o(1) ≈ .207. Unlike the result of Haitner and Omri, our result also holds for weak coin-flipping protocols.

[1]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[2]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[3]  Iftach Haitner A Parallel Repetition Theorem for Any Interactive Argument , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[4]  C. Mochon Quantum weak coin flipping with arbitrarily small bias , 2007, 0711.4114.

[5]  Moni Naor,et al.  Bit commitment using pseudorandomness , 1989, Journal of Cryptology.

[6]  Feng-Hao Liu,et al.  Parallel Repetition Theorems for Interactive Arguments , 2010, TCC.

[7]  Stathis Zachos,et al.  Probabilistic Quantifiers, Adversaries, and Complexity Classes: An Overview , 1986, SCT.

[8]  Eran Omri,et al.  Coin Flipping with Constant Bias Implies One-Way Functions , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[9]  Moni Naor,et al.  Universal one-way hash functions and their cryptographic applications , 1989, STOC '89.

[10]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[11]  Yehuda Lindell,et al.  On the Black-Box Complexity of Optimally-Fair Coin Tossing , 2011, TCC.

[12]  Silvio Micali,et al.  On the Cryptographic Applications of Random Functions , 1984, CRYPTO.

[13]  Omer Reingold,et al.  Statistically Hiding Commitments and Statistical Zero-Knowledge Arguments from Any One-Way Function , 2009, SIAM J. Comput..

[14]  John Rompel,et al.  One-way functions are necessary and sufficient for secure signatures , 1990, STOC '90.

[15]  Leonid A. Levin,et al.  A Pseudorandom Generator from any One-way Function , 1999, SIAM J. Comput..

[16]  Amit Sahai,et al.  On the Computational Complexity of Coin Flipping , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[17]  Richard Cleve,et al.  Limits on the security of coin flips when half the processors are faulty , 1986, STOC '86.

[18]  Nathan Linial,et al.  Collective Coin Flipping , 1989, Adv. Comput. Res..

[19]  Russell Impagliazzo,et al.  One-way functions are essential for complexity based cryptography , 1989, 30th Annual Symposium on Foundations of Computer Science.

[20]  Iordanis Kerenidis,et al.  Optimal Quantum Strong Coin Flipping , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[21]  Eran Omri,et al.  Protocols for Multiparty Coin Toss with a Dishonest Majority , 2015, Journal of Cryptology.

[22]  Rafael Pass,et al.  An Efficient Parallel Repetition Theorem , 2010, TCC.

[23]  D. Varberg Convex Functions , 1973 .

[24]  Justin M. Reyneri,et al.  Coin flipping by telephone , 1984, IEEE Trans. Inf. Theory.

[25]  Moni Naor,et al.  An Optimally Fair Coin Toss , 2015, Journal of Cryptology.