Provable Low Rank Phase Retrieval

We study the Low Rank Phase Retrieval (LRPR) problem defined as follows: recover an <inline-formula> <tex-math notation="LaTeX">$n \times q$ </tex-math></inline-formula> matrix <inline-formula> <tex-math notation="LaTeX">${ \boldsymbol {X}^{*}}$ </tex-math></inline-formula> of rank <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula> from a different and independent set of <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> phaseless (magnitude-only) linear projections of each of its columns. To be precise, we need to recover <inline-formula> <tex-math notation="LaTeX">${ \boldsymbol {X}^{*}}$ </tex-math></inline-formula> from <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {y}_{k}:= | \boldsymbol {A}_{k}{}' \boldsymbol {x}^{*}_{k}|, k=1,2, {\dots }, q$ </tex-math></inline-formula> when the measurement matrices <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {A}_{k}$ </tex-math></inline-formula> are mutually independent. Here <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {y}_{k}$ </tex-math></inline-formula> is an <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> length vector, <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {A}_{k}$ </tex-math></inline-formula> is an <inline-formula> <tex-math notation="LaTeX">$n \times m$ </tex-math></inline-formula> matrix, and <inline-formula> <tex-math notation="LaTeX">$'$ </tex-math></inline-formula> denotes matrix transpose. The question is when can we solve LRPR with <inline-formula> <tex-math notation="LaTeX">$m \ll n$ </tex-math></inline-formula>? A reliable solution can enable fast and low-cost phaseless dynamic imaging, e.g., Fourier ptychographic imaging of live biological specimens. In this work, we develop the first provably correct approach for solving this LRPR problem. Our proposed algorithm, Alternating Minimization for Low-Rank Phase Retrieval (AltMinLowRaP), is an AltMin based solution and hence is also provably fast (converges geometrically). Our guarantee shows that AltMinLowRaP solves LRPR to <inline-formula> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula> accuracy, with high probability, as long as <inline-formula> <tex-math notation="LaTeX">$m q \ge C n r^{4} \log (1/\epsilon)$ </tex-math></inline-formula>, the matrices <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {A}_{k}$ </tex-math></inline-formula> contain i.i.d. standard Gaussian entries, and the right singular vectors of <inline-formula> <tex-math notation="LaTeX">${ \boldsymbol {X}^{*}}$ </tex-math></inline-formula> satisfy the incoherence assumption from matrix completion literature. Here <inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula> is a numerical constant that only depends on the condition number of <inline-formula> <tex-math notation="LaTeX">${ \boldsymbol {X}^{*}}$ </tex-math></inline-formula> and on its incoherence parameter. Its time complexity is only <inline-formula> <tex-math notation="LaTeX">$C mq nr \log ^{2}(1/\epsilon)$ </tex-math></inline-formula>. Since even the linear (with phase) version of the above problem is not fully solved, the above result is also the first complete solution and guarantee for the linear case. Finally, we also develop a simple extension of our results for the dynamic LRPR setting.

[1]  Yonina C. Eldar,et al.  Phaseless PCA: Low-Rank Matrix Recovery from Column-wise Phaseless Measurements , 2019, ICML.

[2]  Namrata Vaswani,et al.  PHASELESS SUBSPACE TRACKING , 2018, 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[3]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Non-Convex Factorization , 2014, IEEE Transactions on Information Theory.

[4]  Andrea J. Goldsmith,et al.  Exact and Stable Covariance Estimation From Quadratic Sampling via Convex Programming , 2013, IEEE Transactions on Information Theory.

[5]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[6]  Michael B. Wakin,et al.  Sketched SVD: Recovering Spectral Features from Compressive Measurements , 2012, ArXiv.

[7]  Namrata Vaswani,et al.  Provable Dynamic Robust PCA or Robust Subspace Tracking , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[8]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[9]  Namrata Vaswani,et al.  Provable Subspace Tracking From Missing Data and Matrix Completion , 2018, IEEE Transactions on Signal Processing.

[10]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[11]  Aarti Singh,et al.  Extreme Compressive Sampling for Covariance Estimation , 2015, IEEE Transactions on Information Theory.

[12]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[13]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[14]  Namrata Vaswani,et al.  NEARLY OPTIMAL ROBUST SUBSPACE TRACKING: A UNIFIED APPROACH , 2017, 2018 IEEE Data Science Workshop (DSW).

[15]  Ashok Veeraraghavan,et al.  Toward Long-Distance Subdiffraction Imaging Using Coherent Camera Arrays , 2015, IEEE Transactions on Computational Imaging.

[16]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[17]  Yoram Bresler,et al.  Near-Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices Via Sparse Power Factorization , 2013, IEEE Transactions on Information Theory.

[18]  Jared Tanner,et al.  Normalized Iterative Hard Thresholding for Matrix Completion , 2013, SIAM J. Sci. Comput..

[19]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[20]  Mathews Jacob,et al.  Accelerated Dynamic MRI Exploiting Sparsity and Low-Rank Structure: k-t SLR , 2011, IEEE Transactions on Medical Imaging.

[21]  Chinmay Hegde,et al.  Sample-Efficient Algorithms for Recovering Structured Signals From Magnitude-Only Measurements , 2017, IEEE Transactions on Information Theory.

[22]  Yuxin Chen,et al.  Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution , 2017, Found. Comput. Math..

[23]  Babak Hassibi,et al.  Recovery of sparse 1-D signals from the magnitudes of their Fourier transform , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[24]  Stephen J. Wright,et al.  Local Convergence of an Algorithm for Subspace Identification from Partial Data , 2013, Found. Comput. Math..

[25]  David P. Woodruff Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..

[26]  Yingbin Liang,et al.  A Nonconvex Approach for Phase Retrieval: Reshaped Wirtinger Flow and Incremental Algorithms , 2017, J. Mach. Learn. Res..

[27]  Yuxin Chen,et al.  Gradient descent with random initialization: fast global convergence for nonconvex phase retrieval , 2018, Mathematical Programming.

[28]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[29]  Yuxin Chen,et al.  Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview , 2018, IEEE Transactions on Signal Processing.

[30]  Zhi-Pei Liang,et al.  Spatiotemporal Imaging with Partially Separable Functions , 2007, 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging.

[31]  Yoram Bresler,et al.  ADMiRA: Atomic Decomposition for Minimum Rank Approximation , 2009, IEEE Transactions on Information Theory.

[32]  Namrata Vaswani,et al.  Support-Predicted Modified-CS for recursive robust principal components' Pursuit , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[33]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[34]  John D. Lafferty,et al.  A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements , 2015, NIPS.

[35]  Xiaodong Li,et al.  Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.

[36]  Prateek Jain,et al.  Non-convex Robust PCA , 2014, NIPS.

[37]  Namrata Vaswani,et al.  Time invariant error bounds for modified-CS based sparse signal sequence recovery , 2013, 2013 IEEE International Symposium on Information Theory.

[38]  Ioannis Mitliagkas Streaming PCA with Many Missing Entries , 2014 .

[39]  Junzhou Huang,et al.  An efficient algorithm for dynamic MRI using low‐rank and total variation regularizations , 2018, Medical Image Anal..

[40]  Akshay Krishnamurthy,et al.  Subspace learning from extremely compressed measurements , 2014, 2014 48th Asilomar Conference on Signals, Systems and Computers.

[41]  Prateek Jain,et al.  Nearly Optimal Robust Matrix Completion , 2016, ICML.

[42]  Ameet Talwalkar,et al.  Can matrix coherence be efficiently and accurately estimated? , 2011, AISTATS.

[43]  Constantine Caramanis,et al.  Fast Algorithms for Robust PCA via Gradient Descent , 2016, NIPS.

[44]  Yonina C. Eldar,et al.  STFT Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2015, IEEE Journal of Selected Topics in Signal Processing.

[45]  Namrata Vaswani,et al.  PhaST: Model-free Phaseless Subspace Tracking , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[46]  Yonina C. Eldar,et al.  Low-Rank Phase Retrieval , 2016, IEEE Transactions on Signal Processing.

[47]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[48]  Richard A. Frazin,et al.  A Monte Carlo Technique for Large-Scale Dynamic Tomography , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[49]  Irène Waldspurger,et al.  Phase Retrieval With Random Gaussian Sensing Vectors by Alternating Projections , 2016, IEEE Transactions on Information Theory.

[50]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[51]  Hanchao Qi,et al.  Invariance of principal components under low-dimensional random projection of the data , 2012, 2012 19th IEEE International Conference on Image Processing.

[52]  Babak Hassibi,et al.  Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2013, IEEE Transactions on Signal Processing.

[53]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[54]  A. Robert Calderbank,et al.  PETRELS: Parallel Subspace Estimation and Tracking by Recursive Least Squares From Partial Observations , 2012, IEEE Transactions on Signal Processing.

[55]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[56]  Emmanuel J. Candès,et al.  Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements , 2010, ArXiv.

[57]  Yonina C. Eldar,et al.  Subspace Learning with Partial Information , 2014, J. Mach. Learn. Res..

[58]  Max Simchowitz,et al.  Low-rank Solutions of Linear Matrix Equations via Procrustes Flow , 2015, ICML.

[59]  Namrata Vaswani,et al.  Sample Efficient Fourier Ptychography for Structured Data , 2020, IEEE Transactions on Computational Imaging.

[60]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[61]  Gang Wang,et al.  Sparse Phase Retrieval via Truncated Amplitude Flow , 2016, IEEE Transactions on Signal Processing.

[62]  Yuejie Chi,et al.  Streaming PCA and Subspace Tracking: The Missing Data Case , 2018, Proceedings of the IEEE.

[63]  Martin J. Wainwright,et al.  Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.

[64]  Sven-Gustav Häggman,et al.  Simplified bounds for the complementary error function; application to the performance evaluation of signal-processing systems , 2004, 2004 12th European Signal Processing Conference.

[65]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[66]  Roman Vershynin,et al.  High-Dimensional Probability , 2018 .

[67]  Zhi-Pei Liang,et al.  SPATIOTEMPORAL IMAGINGWITH PARTIALLY SEPARABLE FUNCTIONS , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[68]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[69]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[70]  Sujay Sanghavi,et al.  The Local Convexity of Solving Systems of Quadratic Equations , 2015, 1506.07868.

[71]  Shannon M. Hughes,et al.  Memory and Computation Efficient PCA via Very Sparse Random Projections , 2014, ICML.

[72]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..