Hydrogen effect on lean flammability limits and burning characteristics of an isooctane–air mixture

[1]  M. G. Zabetakis,et al.  Limits of Flammability of Paraffin Hydrocarbons in Air , 1951 .

[2]  P. Gaskell,et al.  Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study , 1996 .

[3]  S. Davis,et al.  Laminar flame speeds and oxidation kinetics of iso-octane-air and n-heptane-air flames , 1998 .

[4]  D. Bradley,et al.  The measurement of laminar burning velocities and Markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb , 1998 .

[5]  J. Shepherd,et al.  Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures , 2000 .

[6]  N. Peters,et al.  Quenching of laminar iso-octane flames at cold walls , 2000 .

[7]  C. Sung,et al.  Structure, aerodynamics, and geometry of premixed flamelets , 2000 .

[8]  D. Himmelblau,et al.  Optimization of chemical process , 2001 .

[9]  Volkmar Schröder,et al.  Flammability of gas mixtures. Part 1: fire potential. , 2005, Journal of hazardous materials.

[10]  F. Dryer,et al.  A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion , 2007 .

[11]  C. Sheppard,et al.  Effects of hydrogen addition on laminar and turbulent premixed methane and iso-octane–air flames , 2007 .

[12]  Kamal Kumar,et al.  Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures , 2007 .

[13]  Jinhua Wang,et al.  Laminar burning velocities and combustion characteristics of propane-hydrogen-air premixed flames , 2008 .

[14]  Zuo-hua Huang,et al.  Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames , 2009 .

[15]  N. Peters,et al.  Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation , 2009 .

[16]  C. Law,et al.  Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames , 2009 .

[17]  H. Yamashita,et al.  Burning velocity and OH concentration in premixed combustion , 2009 .

[18]  Jinhua Wang,et al.  Effect of hydrogen addition on early flame growth of lean burn natural gas–air mixtures , 2010 .

[19]  M. Kuznetsov,et al.  Laminar burning velocities of hydrogen-oxygen-steam mixtures at elevated temperatures and pressures , 2011 .

[20]  F. Halter,et al.  Laminar premixed flame characteristics of hydrogen blended iso-octaneairnitrogen mixtures , 2011 .

[21]  F. Halter,et al.  Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends , 2011 .

[22]  Zuo-hua Huang,et al.  Flammability limits of hydrogen-enriched natural gas , 2011 .

[23]  R. Cracknell,et al.  Laminar burning velocity measurements of liquid fuels at elevated pressures and temperatures with combustion residuals , 2011 .

[24]  C. Westbrook,et al.  Kinetic modeling of gasoline surrogate components and mixtures under engine conditions , 2011 .

[25]  Shuofeng Wang,et al.  Effect of syngas addition on performance of a spark-ignited gasoline engine at lean conditions , 2012 .

[26]  Zuo-hua Huang,et al.  Laminar burning characteristics of 2,5-dimethylfuran and iso-octane blend at elevated temperatures and pressures , 2012 .

[27]  C. Sheppard,et al.  The turbulent burning velocity of iso-octane/air mixtures , 2012 .

[28]  T. Jordan,et al.  Flammability limits and laminar flame speed of hydrogen–air mixtures at sub-atmospheric pressures , 2012 .

[29]  Fushui Liu,et al.  Onset of cellular instabilities in spherically propagating hydrogen-air premixed laminar flames , 2012 .

[30]  F. Halter,et al.  Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures , 2012 .

[31]  Zuo-yu Sun,et al.  Research on cellular instabilities in outwardly propagating spherical hydrogen-air flames , 2012 .

[32]  A. Sen,et al.  Engine performance, exhaust emissions, and cyclic variations in a lean-burn SI engine fueled by gasoline–hydrogen blends , 2012 .

[33]  X. Bai,et al.  Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence , 2013 .

[34]  Stanislaw Szwaja,et al.  A two-stage combustion system for burning lean gasoline mixtures in a stationary spark ignited engine , 2013 .

[35]  F. Halter,et al.  On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures , 2013 .

[36]  Jack L. Ziegler,et al.  Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen , 2013 .

[37]  S. Aggarwal,et al.  Effect of hydrogen and syngas addition on the ignition of iso-octane/air mixtures , 2013 .

[38]  Zuo-hua Huang,et al.  Measurements of laminar flame speeds and flame instability analysis of 2-methyl-1-butanol-air mixtures , 2013 .

[39]  Bo Zhang,et al.  Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition , 2014 .

[40]  Y. Ju,et al.  Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames , 2014 .

[41]  Qi Zhang,et al.  Influence of initial pressure and temperature on flammability limits of hydrogen–air , 2014 .

[42]  F. Dryer,et al.  Uncertainties in interpretation of high pressure spherical flame propagation rates due to thermal radiation , 2014 .

[43]  N. Swaminathan,et al.  Simulation of turbulent explosion of hydrogen–air mixtures , 2014 .

[44]  Paul J. Litke,et al.  Combustion Visualization, Performance, and CFD Modeling of a Pre-Chamber Turbulent Jet Ignition System in a Rapid Compression Machine , 2015 .

[45]  Zheng Chen,et al.  Laminar flame propagation and ignition properties of premixed iso-octane/air with hydrogen addition , 2015 .

[46]  H. Pitsch,et al.  Determination of burning velocities from spherically expanding H 2 /air flames , 2015 .

[47]  Zuo-hua Huang,et al.  Kinetic analysis of H2 addition effect on the laminar flame parameters of the C1–C4 n-alkane-air mixtures: From one step overall assumption to detailed reaction mechanism , 2015 .

[48]  Wonjoon Jang,et al.  Flammability limits and burning characteristics of CO–H2–H2O–CO2–N2 mixtures at elevated temperatures , 2015 .

[49]  B. M. Dariani,et al.  Effects of pressure and temperature on laminar burning velocity and flame instability of iso-octane/methane fuel blend , 2016 .

[50]  Gan Cui,et al.  Experimental study of minimum ignition energy of methane/air mixtures at elevated temperatures and pressures , 2016 .

[51]  Xiumin Yu,et al.  Research on combustion and emission characteristics of a lean burn gasoline engine with hydrogen direct-injection , 2016 .

[52]  Alexander K. Voice,et al.  Flammability and volatility attributes of binary mixtures of some practical multi-component fuels , 2016 .

[53]  Bin Wu,et al.  Comparison of lean burn characteristics of an SI engine fueled with methanol and gasoline under idle condition , 2016 .

[54]  Zuo-hua Huang,et al.  High-temperature oxidation kinetics of iso-octane/n-butanol blends-air mixture , 2017 .

[55]  Y. Rezgui,et al.  Effect of hydrogen addition on equimolar dimethyl ether/iso-octane/oxygen/argon premixed flames , 2017 .

[56]  S. Chung,et al.  Influence of Ethanol and Exhaust Gas Recirculation on Laminar Burning Behaviors of Fuels for Advanced Combustion Engines (FACE-C) Gasoline and Its Surrogate , 2017 .

[57]  E. Zanoelo,et al.  Flammability limits of iso-butanol/iso-octane/n-heptane blends , 2017 .

[58]  Xiumin Yu,et al.  Effects of hydrogen direct injection strategy on characteristics of lean-burn hydrogen–gasoline engines , 2017 .

[59]  Jingping Liu,et al.  Effects of lean combustion coupling with intake tumble on economy and emission performance of gasoline engine , 2017 .

[60]  Timothy H. Lee,et al.  Experimental and kinetic studies on laminar flame characteristics of acetone-butanol-ethanol (ABE) and toluene reference fuel (TRF) blends at atmospheric pressure , 2018, Fuel.

[61]  M. T. Nguyen,et al.  Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion , 2018 .

[62]  Lucien Koopmans,et al.  Homogeneous Lean Combustion in a 2lt Gasoline Direct Injected Engine with an Enhanced Turbo Charging System , 2018, SAE Technical Paper Series.

[63]  T. Shen,et al.  Adaptive Lean Air-Fuel Ratio Control and Analysis of Commercial Gasoline Engines , 2018 .

[64]  Quanchang Zhang,et al.  Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends , 2019, Energy.

[65]  C. Lee,et al.  Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions , 2019, Applied Energy.

[66]  Sotirios Mamalis,et al.  Experimental study of lean spark ignition combustion using gasoline, ethanol, natural gas, and syngas , 2019, Fuel.

[67]  C. Lee,et al.  Experimental and kinetic investigation on the effects of hydrogen additive on laminar premixed methanol–air flames , 2019, International Journal of Hydrogen Energy.

[68]  C. Lee,et al.  The experimental investigation on the impact of toluene addition on low-temperature ignition characteristics of diesel spray , 2019, Fuel.

[69]  Fushui Liu,et al.  The Optical Investigation on Initial Flame Developing Characteristics of Diesel Jet under Cold Start Conditions , 2021 .