Synthesis and biological evaluation of novel heterocyclic derivatives of combretastatin A-4.

[1]  J. Wdzieczak‐Bakala,et al.  Conformationnally restricted naphthalene derivatives type isocombretastatin A-4 and isoerianin analogues: synthesis, cytotoxicity and antitubulin activity. , 2012, European journal of medicinal chemistry.

[2]  T. Cresteil,et al.  Influence of the skeleton on the cytotoxicity of flavonoids. , 2012, Bioorganic & medicinal chemistry.

[3]  María Kimatrai Salvador,et al.  Synthesis and evaluation of 1,5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity. , 2012, Journal of medicinal chemistry.

[4]  C. Nájera,et al.  Recent advances in Sonogashira reactions. , 2011, Chemical Society reviews.

[5]  X. Cachet,et al.  Biological potential and structure-activity relationships of most recently developed vascular disrupting agents: an overview of new derivatives of natural combretastatin a-4. , 2011, Current medicinal chemistry.

[6]  A. Caldarelli,et al.  Regioselective Suzuki coupling of dihaloheteroaromatic compounds as a rapid strategy to synthesize potent rigid combretastatin analogues. , 2011, Journal of medicinal chemistry.

[7]  D. Han,et al.  Biological evaluation of KRIBB3 analogs as a microtubule polymerization inhibitor. , 2011, Bioorganic & medicinal chemistry letters.

[8]  Jian Zhang,et al.  Developments of combretastatin A-4 derivatives as anticancer agents. , 2011, Current medicinal chemistry.

[9]  C. Dumontet,et al.  Microtubule-binding agents: a dynamic field of cancer therapeutics , 2010, Nature Reviews Drug Discovery.

[10]  Osman A. B. S. M. Gani,et al.  1,2,3-triazole analogs of combretastatin A-4 as potential microtubule-binding agents. , 2010, Bioorganic & medicinal chemistry.

[11]  B. Baguley,et al.  Disrupting established tumor blood vessels , 2010, Cancer.

[12]  R. Hua,et al.  Highly chemo- and stereoselective palladium-catalyzed transfer semihydrogenation of internal alkynes affording cis-alkenes. , 2010, The Journal of organic chemistry.

[13]  C. Sessa,et al.  AVE8062: a new combretastatin derivative vascular disrupting agent , 2009, Expert opinion on investigational drugs.

[14]  J. Wdzieczak‐Bakala,et al.  Isocombretastatins a versus combretastatins a: the forgotten isoCA-4 isomer as a highly promising cytotoxic and antitubulin agent. , 2009, Journal of medicinal chemistry.

[15]  D. Chaplin,et al.  A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P) , 2009, Expert opinion on investigational drugs.

[16]  A. Giraud,et al.  One-pot hydrosilylation-protodesilylation of functionalized diarylalkynes : a highly selective access to Z-stilbenes. Application to the synthesis of combretastatin A-4 , 2008 .

[17]  E. Jeanneau,et al.  Deprotonative metalation of five-membered aromatic heterocycles using mixed lithium-zinc species. , 2008, The Journal of organic chemistry.

[18]  G. Tron,et al.  In Vitro Metabolism Study of Combretastatin A-4 in Rat and Human Liver Microsomes , 2007, Drug Metabolism and Disposition.

[19]  Anurag Chaudhary,et al.  Combretastatin a-4 analogs as anticancer agents. , 2007, Mini reviews in medicinal chemistry.

[20]  G. Rustin,et al.  Vascular damaging agents. , 2007, Clinical oncology (Royal College of Radiologists (Great Britain)).

[21]  C. Nájera,et al.  The Sonogashira reaction: a booming methodology in synthetic organic chemistry. , 2007, Chemical reviews.

[22]  Jean‐Cyrille Hierso,et al.  Palladium-based catalytic systems for the synthesis of conjugated enynes by sonogashira reactions and related alkynylations. , 2007, Angewandte Chemie.

[23]  J. Lippert Vascular disrupting agents. , 2007, Bioorganic & medicinal chemistry.

[24]  S. Monti,et al.  Novel imidazole-based combretastatin A-4 analogues: evaluation of their in vitro antitumor activity and molecular modeling study of their binding to the colchicine site of tubulin. , 2006, Bioorganic & medicinal chemistry letters.

[25]  Y. Harigaya,et al.  Mild Deprotection of tert‐Butyl Carbamates of NH‐Heteroarenes under Basic Conditions , 2006 .

[26]  C. Stocking,et al.  Novel bis(1H-indol-2-yl)methanones as potent inhibitors of FLT3 and platelet-derived growth factor receptor tyrosine kinase. , 2006, Journal of medicinal chemistry.

[27]  G. Giannini,et al.  Novel combretastatin analogues endowed with antitumor activity. , 2006, Journal of medicinal chemistry.

[28]  Giovanni Sorba,et al.  Medicinal chemistry of combretastatin A4: present and future directions. , 2006, Journal of medicinal chemistry.

[29]  R. Pettit,et al.  Antineoplastic agents. 445. Synthesis and evaluation of structural modifications of (Z)- and (E)-combretastatin A-41. , 2005, Journal of medicinal chemistry.

[30]  D. Alberts,et al.  Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4 , 1989, Experientia.

[31]  B. Wex,et al.  Structural concept for fluorinated Y-enynes with solvatochromic properties , 2002, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[32]  S. Rosenberg,et al.  Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. , 2002, Journal of medicinal chemistry.

[33]  N. Lawrence,et al.  Novel syntheses of cis and trans isomers of combretastatin A-4. , 2001, The Journal of organic chemistry.

[34]  N. Lawrence,et al.  The Synthesis of (E) and (Z)-Combretastatins A-4 and a Phenanthrene from Combretum caffrum , 1999 .

[35]  H. Herz,et al.  2-ARYLVINYLATION OF 1-METHYLINDOLE BY PALLADIUM-CATALYZED CROSS-COUPLING REACTIONS , 1999 .

[36]  R. Nakagawa,et al.  Syntheses and antitumor activity of cis-restricted combretastatins: 5-membered heterocyclic analogues. , 1998, Bioorganic & medicinal chemistry letters.

[37]  Y. Koiso,et al.  Asymmetric synthesis of antimitotic combretadioxolane with potent antitumor activity against multi-drug resistant cells. , 1998, Bioorganic & medicinal chemistry letters.

[38]  R. Nakagawa,et al.  Novel combretastatin analogues effective against murine solid tumors: design and structure-activity relationships. , 1998, Journal of medicinal chemistry.

[39]  N. Lawrence,et al.  Tubulin as a target for anticancer drugs: Agents which interact with the mitotic spindle , 1998, Medicinal research reviews.

[40]  T. Sakamoto,et al.  Deprotection of N-sulfonyl nitrogen-heteroaromatics with tetrabutylammonium fluoride , 1998 .

[41]  A. Fürstner,et al.  Ethynylation of Aryl Halides by a Modified Suzuki Reaction: Application to the Syntheses of Combretastatin A-4, A-5 and Lunularic Acid , 1996 .

[42]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[43]  M. Boyd,et al.  Antineoplastic agents 322. synthesis of combretastatin A-4 prodrugs. , 1995, Anti-cancer drug design.

[44]  M. Boyd,et al.  Antineoplastic agents. 291. Isolation and synthesis of combretastatins A-4, A-5, and A-6(1a) , 1995, Journal of medicinal chemistry.

[45]  S. Schneider-Maunoury,et al.  Expression of the human papillomavirus type 16 genome in SK-v cells, a line derived from a vulvar intraepithelial neoplasia. , 1990, The Journal of general virology.

[46]  G. Gribble,et al.  Synthesis of alkyl-substituted N-protected indoles via acylation and reductive deoxygenation , 1989 .

[47]  E. Hamel,et al.  Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent combretastatin: a structure-activity study. , 1988, Molecular pharmacology.

[48]  J. Hornung,et al.  Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line , 1988, The Journal of cell biology.

[49]  Y. Asakawa,et al.  New substituted bibenzyls of Frullania brittoniae subsp. Truncatifolia , 1976 .