Superior energy storage BaTiO3-based amorphous dielectric film with polymorphic hexagonal and cubic nanostructures

[1]  Hanxing Liu,et al.  Large energy-storage density with good dielectric property in bismuth sodium titanate-based thin films , 2021 .

[2]  Hanxing Liu,et al.  Ultra-high energy storage density and enhanced dielectric properties in BNT-BT based thin film , 2021 .

[3]  Ge Wang,et al.  Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives , 2021, Chemical reviews.

[4]  S. Trolier-McKinstry,et al.  The influence of Mn doping on the leakage current mechanisms and resistance degradation behavior in lead zirconate titanate films , 2021 .

[5]  Guangzu Zhang,et al.  Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency , 2020, Nature Communications.

[6]  Hanxing Liu,et al.  Defect structure evolution and electrical properties of BaTiO 3 ‐based ferroelectric ceramics , 2020 .

[7]  Fei Li,et al.  Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications , 2020, Nature Materials.

[8]  J. Maria,et al.  Crystallization behavior of amorphous BaTiO3 thin films , 2020, Journal of Materials Science.

[9]  R. Zuo,et al.  Superior Energy‐Storage Capacitors with Simultaneously Giant Energy Density and Efficiency Using Nanodomain Engineered BiFeO3‐BaTiO3‐NaNbO3 Lead‐Free Bulk Ferroelectrics , 2019, Advanced Energy Materials.

[10]  Hanxing Liu,et al.  Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors via amorphous-structure engineering , 2019, Journal of Materials Chemistry C.

[11]  Fei Li,et al.  (Bi0.51 Na0.47)TiO3 based lead free ceramics with high energy density and efficiency , 2019, Journal of Materiomics.

[12]  Qinghua Zhang,et al.  Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design , 2019, Science.

[13]  X. Dong,et al.  High energy storage performance in lead-free BiFeO3-BaTiO3 ferroelectric thin film fabricated by pulsed laser deposition , 2019, AIP Advances.

[14]  Fei Li,et al.  Perovskite lead-free dielectrics for energy storage applications , 2019, Progress in Materials Science.

[15]  Shujun Zhang,et al.  Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors , 2019, Journal of Materials Chemistry A.

[16]  F. Gao,et al.  Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties , 2019, Nano Energy.

[17]  Hanxing Liu,et al.  Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3 , 2019, Journal of the European Ceramic Society.

[18]  Changhong Yang,et al.  Fatigue‐Free and Bending‐Endurable Flexible Mn‐Doped Na0.5Bi0.5TiO3‐BaTiO3‐BiFeO3 Film Capacitor with an Ultrahigh Energy Storage Performance , 2019, Advanced Energy Materials.

[19]  J. Zhai,et al.  Grain size dependent physical properties in lead-free multifunctional piezoceramics: A case study of NBT-xST system , 2019, Acta Materialia.

[20]  Jingfeng Li,et al.  Enhanced antiferroelectric phase stability in La-doped AgNbO3: perspectives from the microstructure to energy storage properties , 2019 .

[21]  M. Guo,et al.  Energy storage properties in BaTiO3-Bi3.25La0.75Ti3O12 thin films , 2018, Applied Physics Letters.

[22]  Geon‐Tae Hwang,et al.  High‐Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook , 2018, Advanced Functional Materials.

[23]  X. Dong,et al.  Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability , 2018 .

[24]  Ju Gao,et al.  High energy-storage density of lead-free BiFeO3 doped Na0.5Bi0.5TiO3-BaTiO3 thin film capacitor with good temperature stability , 2018, Journal of Alloys and Compounds.

[25]  X. Tan,et al.  Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density , 2018 .

[26]  Hong Wang,et al.  Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties , 2017 .

[27]  Jingfeng Li,et al.  Lead‐Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance , 2017, Advanced materials.

[28]  Xihong Hao,et al.  Effects of Mn doping on dielectric properties and energy-storage performance of Na0.5Bi0.5TiO3 thick films , 2017 .

[29]  Ming Wu,et al.  Large Energy Density, Excellent Thermal Stability, and High Cycling Endurance of Lead-Free BaZr0.2Ti0.8O3 Film Capacitors. , 2017, ACS applied materials & interfaces.

[30]  M. Lanagan,et al.  Homogeneous/Inhomogeneous‐Structured Dielectrics and their Energy‐Storage Performances , 2017, Advanced materials.

[31]  Qian Li,et al.  Large Piezoelectricity and Ferroelectricity in Mn‐Doped (Bi0.5Na0.5)TiO3‐BaTiO3 Thin Film Prepared by Pulsed Laser Deposition , 2016 .

[32]  D. Fu,et al.  Effect of Stress Engineering on the Electrical Properties of BaTiO3 Thin Film , 2011 .

[33]  E. Wachtel,et al.  Quasi‐Amorphous Inorganic Thin Films: Non‐Crystalline Polar Phases , 2010, Advanced materials.

[34]  Zi-kui Liu,et al.  Modified Phase Diagram for the Barium Oxide–Titanium Dioxide System for the Ferroelectric Barium Titanate , 2007 .

[35]  Sea-Fue Wang,et al.  Properties of Hexagonal Ba(Ti1-xMnx)O3 Ceramics: Effects of Sintering Temperature and Mn Content , 2007 .

[36]  S. Yoda,et al.  Giant Dielectric Constant of Hexagonal BaTiO3 Crystal Grown by Containerless Processing , 2004 .

[37]  Hong-Yang Lu,et al.  π‐Rotation Faults in Hexagonal BaTiO3 , 2004 .

[38]  R. Waser,et al.  In-plane polarization states and their instabilities in polydomain epitaxial ferroelectric thin films , 2001 .

[39]  Weiguang Zhu,et al.  Preparation, Property, and Mechanism Studies of Amorphous Ferroelectric (Ba, Sr)TiO_3 Thin Films for Novel Metal–ferroelectric–metal Type Hydrogen Gas Sensors , 2000 .

[40]  M. N. Kamalasanan,et al.  Electrical Properties of Sol-Gel Processed Amorphous BaTiO3 Thin Films , 1999 .

[41]  M. Sepliarsky,et al.  Model potential for the ferroelectric ABO3 perovskites , 1996 .

[42]  O. Eibl,et al.  Extended defects in hexagonal BaTiO3 , 1989 .

[43]  Terutaro Nakamura,et al.  The Structural, Dielectric, Raman-Spectral and Low-Temperature Properties of Amorphous PbTiO3 , 1984 .

[44]  Sung-Yoon Chung,et al.  Multiphase transformation and Ostwald’s rule of stages during crystallization of a metal phosphate , 2009 .

[45]  Chang-I. Kim,et al.  Structural and dielectric properties of barium strontium calcium titanate thick films modified with MnO2 for phased array antennas , 2004 .

[46]  J. Nývlt The Ostwald Rule of Stages , 1995 .