DC-MAC: A data-centric multi-hop MAC protocol for underwater acoustic sensor networks

Due to the unique characteristics of long signal propagation, high error rate and low bandwidth in the underwater environment, the design of the medium access control (MAC) protocol for underwater acoustic networks poses significant challenges. The previous MAC protocols designed for flexible communication models have limited achievements in performance. In this paper, we consider a practical application and propose a data-centric multi-hop MAC protocol, called DC-MAC, to enhance the performance on throughput and average end-to-end packet transmission delay. Our design uses multi-channel strategy to limit transmission interference by creating multiple collision domains, and dynamic collision-free polling strategy to offer efficient protocol handshake. We analyze the saturation throughput performance and conduct extensive simulation experiments to study the throughput and delay performance. Comparing to slotted FAMA which is a potential MAC protocol candidate for the same environment, our results show that DC-MAC outperforms its peer.

[1]  Ian F. Akyildiz,et al.  State of the art in protocol research for underwater acoustic sensor networks , 2006, MOCO.

[2]  Prasant Mohapatra,et al.  STUMP: Exploiting Position Diversity in the Staggered TDMA Underwater MAC Protocol , 2009, IEEE INFOCOM 2009.

[3]  John S. Heidemann,et al.  T-Lohi: A New Class of MAC Protocols for Underwater Acoustic Sensor Networks , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[4]  Periklis Chatzimisios,et al.  IEEE 802.11 packet delay-a finite retry limit analysis , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[5]  Periklis Chatzimisios,et al.  Performance analysis of IEEE 802.11 DCF in presence of transmission errors , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[6]  V. Vitsas,et al.  Enhancing performance of the IEEE 802.11 distributed coordination function via packet bursting , 2004, IEEE Global Telecommunications Conference Workshops, 2004. GlobeCom Workshops 2004..

[7]  M. Stojanovic,et al.  Slotted FAMA: a MAC protocol for underwater acoustic networks , 2006, OCEANS 2006 - Asia Pacific.

[8]  John S. Heidemann,et al.  Time Synchronization for High Latency Acoustic Networks , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[9]  Periklis Chatzimisios,et al.  Delay Distribution Analysis of the RTS/CTS mechanism of IEEE 802.11 , 2006, Proceedings. 2006 31st IEEE Conference on Local Computer Networks.

[10]  Periklis Chatzimisios,et al.  IEEE 802.11 Wireless LANs: Performance Analysis and Protocol Refinement , 2005, EURASIP J. Wirel. Commun. Netw..

[11]  Bhaskar Krishnamachari,et al.  Understanding spatio-temporal uncertainty in medium access with ALOHA protocols , 2007, Underwater Networks.

[12]  Periklis Chatzimisios,et al.  Influence of channel BER on IEEE 802.11 DCF , 2003 .

[13]  Anthony C. Boucouvalas,et al.  Optimizing IrDA throughput by including processing time with physical layerconsideration , 2005 .

[14]  Periklis Chatzimisios,et al.  Achieving performance enhancement in IEEE 802.11 WLANs by using the DIDD backoff mechanism , 2007, Int. J. Commun. Syst..

[15]  Kee Chaing Chua,et al.  RIPT: A Receiver-Initiated Reservation-Based Protocol for Underwater Acoustic Networks , 2008, IEEE Journal on Selected Areas in Communications.

[16]  Periklis Chatzimisios,et al.  Packet Delay Performance Comparison of the IEEE 802.11 and IrDA Air CSMA/CA Protocols in High-Speed Wireless LANs , 2006, EuroIMSA.

[17]  Periklis Chatzimisios,et al.  Packet delay analysis of the advanced infrared (AIr) CSMA/CA MAC protocol in optical wireless LANs , 2005, Int. J. Commun. Syst..

[18]  V. Vitsas,et al.  Optimisation of RTS/CTS handshake in IEEE 802.11 wireless LANs for maximum performance , 2004, IEEE Global Telecommunications Conference Workshops, 2004. GlobeCom Workshops 2004..

[19]  Dario Pompili,et al.  Overview of networking protocols for underwater wireless communications , 2009, IEEE Communications Magazine.

[20]  Periklis Chatzimisios,et al.  On Improving Performance for IEEE 802.11 Wireless LANs under Congested and Error-Prone Environments , 2006, EuroIMSA.

[21]  Periklis Chatzimisios,et al.  Packet delay analysis of IEEE 802.11 MAC protocol , 2003 .

[22]  V. Vitsas,et al.  DIDD backoff scheme: An enhancement to IEEE 802.11 DCF under burst transmission errors , 2006, 2006 IEEE Sarnoff Symposium.

[23]  Jun-Hong Cui,et al.  Handling Triple Hidden Terminal Problems for Multichannel MAC in Long-Delay Underwater Sensor Networks , 2010, IEEE Transactions on Mobile Computing.

[24]  Periklis Chatzimisios,et al.  Performance analysis of the IEEE 802.11 MAC protocol for wireless LANs , 2005, Int. J. Commun. Syst..

[25]  Dario Pompili,et al.  Underwater acoustic sensor networks: research challenges , 2005, Ad Hoc Networks.

[26]  J. Hosking Welcome message from the chairs , 2014, Ninth International Conference on Digital Information Management (ICDIM 2014).

[27]  Kate Ching-Ju Lin,et al.  ST-MAC: Spatial-Temporal MAC Scheduling for Underwater Sensor Networks , 2009, IEEE INFOCOM 2009.