OmniPrint: A Configurable Printed Character Synthesizer

We introduce OmniPrint, a synthetic data generator of isolated printed characters, geared toward machine learning research. It draws inspiration from famous datasets such as MNIST, SVHN and Omniglot, but offers the capability of generating a wide variety of printed characters from various languages, fonts and styles, with customized distortions. We include 935 fonts from 27 scripts and many types of distortions. As a proof of concept, we show various use cases, including an example of meta-learning dataset designed for the upcoming MetaDL NeurIPS 2021 competition. OmniPrint is available at https://github.com/SunHaozhe/OmniPrint. Figure 1: Examples of characters generated by OmniPrint.

[1]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[2]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[3]  Muriel Visani,et al.  An efficient parametrization of character degradation model for semi-synthetic image generation , 2013, HIP '13.

[4]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[5]  Shijian Lu,et al.  ICDAR2017 Competition on Reading Chinese Text in the Wild (RCTW-17) , 2017, 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR).

[6]  Shijian Lu,et al.  Spatial Fusion GAN for Image Synthesis , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Venu Govindaraju,et al.  Equivalence of Different Methods for Slant and Skew Corrections in Word Recognition Applications , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Tao Wang,et al.  End-to-end text recognition with convolutional neural networks , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[9]  Taesung Park,et al.  CyCADA: Cycle-Consistent Adversarial Domain Adaptation , 2017, ICML.

[10]  David S. Doermann,et al.  Geometric Rectification of Camera-Captured Document Images , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Noman Islam,et al.  A Survey on Optical Character Recognition System , 2017, ArXiv.

[12]  Xiang Bai,et al.  Script identification in the wild via discriminative convolutional neural network , 2016, Pattern Recognit..

[13]  Jiri Matas,et al.  E2E-MLT - an Unconstrained End-to-End Method for Multi-Language Scene Text , 2018, ACCV Workshops.

[14]  Oriol Vinyals,et al.  Matching Networks for One Shot Learning , 2016, NIPS.

[15]  Yann LeCun,et al.  Transformation Invariance in Pattern Recognition-Tangent Distance and Tangent Propagation , 1996, Neural Networks: Tricks of the Trade.

[16]  Kate Saenko,et al.  Deep CORAL: Correlation Alignment for Deep Domain Adaptation , 2016, ECCV Workshops.

[17]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[18]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[19]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[20]  Manik Varma,et al.  Character Recognition in Natural Images , 2009, VISAPP.

[21]  Fuzhen Zhuang,et al.  Deep Subdomain Adaptation Network for Image Classification , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[22]  Richard S. Zemel,et al.  Prototypical Networks for Few-shot Learning , 2017, NIPS.

[23]  Muriel Visani,et al.  Semi-synthetic Document Image Generation Using Texture Mapping on Scanned 3D Document Shapes , 2013, 2013 12th International Conference on Document Analysis and Recognition.

[24]  Nitish Srivastava,et al.  Unsupervised Learning of Video Representations using LSTMs , 2015, ICML.

[25]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[26]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[27]  Jiashi Feng,et al.  Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation , 2020, ICML.

[28]  Robert M. Haralick,et al.  Global and local document degradation models , 1993, Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR '93).

[29]  Ning Xu,et al.  Controllable Artistic Text Style Transfer via Shape-Matching GAN , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[30]  Cong Yao,et al.  UnrealText: Synthesizing Realistic Scene Text Images from the Unreal World , 2020, CVPR 2020.

[31]  Timnit Gebru,et al.  Datasheets for datasets , 2018, Commun. ACM.

[32]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[33]  Seong Joon Oh,et al.  What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[34]  Other Contributors Are Indicated Where They Contribute The FreeType Project , 2017 .

[35]  Andy B. Yoo,et al.  Approved for Public Release; Further Dissemination Unlimited X-ray Pulse Compression Using Strained Crystals X-ray Pulse Compression Using Strained Crystals , 2002 .

[36]  Jun Huang,et al.  SwapText: Image Based Texts Transfer in Scenes , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Amos Storkey,et al.  Meta-Learning in Neural Networks: A Survey , 2020, IEEE transactions on pattern analysis and machine intelligence.

[38]  Shijian Lu,et al.  Verisimilar Image Synthesis for Accurate Detection and Recognition of Texts in Scenes , 2018, ECCV.

[39]  Geoffrey French,et al.  Self-ensembling for visual domain adaptation , 2017, ICLR.

[40]  Yiqiang Chen,et al.  Transfer Learning with Dynamic Adversarial Adaptation Network , 2019, 2019 IEEE International Conference on Data Mining (ICDM).

[41]  Michael I. Jordan,et al.  Learning Transferable Features with Deep Adaptation Networks , 2015, ICML.

[42]  Wafa Khlif,et al.  ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Text Detection and Recognition — RRC-MLT-2019 , 2019, 2019 International Conference on Document Analysis and Recognition (ICDAR).

[43]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[44]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Lianwen Jin,et al.  Text Recognition in the Wild , 2020, ACM Comput. Surv..

[46]  Yongdong Zhang,et al.  A Fast Uyghur Text Detector for Complex Background Images , 2018, IEEE Transactions on Multimedia.

[47]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[48]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[49]  Artem Molchanov,et al.  Generalized Inner Loop Meta-Learning , 2019, ArXiv.

[50]  Ankush Gupta,et al.  Synthetic Data for Text Localisation in Natural Images , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  A. Harvey,et al.  Skew detection in handwritten scripts , 1997, TENCON '97 Brisbane - Australia. Proceedings of IEEE TENCON '97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat. No.97CH36162).

[52]  Hugo Larochelle,et al.  Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples , 2019, ICLR.

[53]  Muriel Visani,et al.  A character degradation model for grayscale ancient document images , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[54]  Justin Gilmer,et al.  MNIST-C: A Robustness Benchmark for Computer Vision , 2019, ArXiv.

[55]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[56]  L'eon Bottou,et al.  Cold Case: The Lost MNIST Digits , 2019, NeurIPS.

[57]  Pietro Perona,et al.  Caltech-UCSD Birds 200 , 2010 .

[58]  Shijian Lu,et al.  GA-DAN: Geometry-Aware Domain Adaptation Network for Scene Text Detection and Recognition , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[59]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[60]  Alex Lamb,et al.  Deep Learning for Classical Japanese Literature , 2018, ArXiv.

[61]  Andrew Zisserman,et al.  Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition , 2014, ArXiv.

[62]  Trevor Darrell,et al.  Deep Domain Confusion: Maximizing for Domain Invariance , 2014, CVPR 2014.

[63]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[64]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[65]  Gregory Cohen,et al.  EMNIST: Extending MNIST to handwritten letters , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[66]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[67]  Alex Graves,et al.  Generating Sequences With Recurrent Neural Networks , 2013, ArXiv.

[68]  Liang Wu,et al.  Editing Text in the Wild , 2019, ACM Multimedia.

[69]  Gabriela Csurka,et al.  Domain Adaptation for Visual Applications: A Comprehensive Survey , 2017, ArXiv.