A V-cycle Multigrid for multilevel matrix algebras: proof of optimality

We analyze the convergence rate of a multigrid method for multilevel linear systems whose coefficient matrices are generated by a real and nonnegative multivariate polynomial f and belong to multilevel matrix algebras like circulant, tau, Hartley, or are of Toeplitz type. In the case of matrix algebra linear systems, we prove that the convergence rate is independent of the system dimension even in presence of asymptotical ill-conditioning (this happens iff f takes the zero value). More precisely, if the d-level coefficient matrix has partial dimension nr at level r, with $${r=1, \ldots, d}$$ , then the size of the system is $${{N(\varvec{n})=\prod_{r=1}^d n_r}}$$ , $${\varvec{n}=(n_1, \ldots, n_d)}$$ , and O(N(n)) operations are required by the considered V-cycle Multigrid in order to compute the solution within a fixed accuracy. Since the total arithmetic cost is asymptotically equivalent to the one of a matrix-vector product, the proposed method is optimal. Some numerical experiments concerning linear systems arising in 2D and 3D applications are considered and discussed.

[1]  Stefano Serra Capizzano,et al.  On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..

[2]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[3]  Marco Donatelli,et al.  A multigrid for image deblurring with Tikhonov regularization , 2005, Numer. Linear Algebra Appl..

[4]  Eugene E. Tyrtyshnikov,et al.  Circulant preconditioners with unbounded inverses , 1995 .

[5]  A. Brandt Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with L 2 -norm , 1994 .

[6]  Stefano Serra Capizzano,et al.  Two‐grid methods for banded linear systems from DCT III algebra , 2005, Numer. Linear Algebra Appl..

[7]  Stefano Serra-Capizzano,et al.  Multigrid Methods for Multilevel Circulant Matrices , 2005 .

[8]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[9]  Thomas Huckle,et al.  Multigrid Preconditioning and Toeplitz Matrices , 2002 .

[10]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[11]  Stefano Serra Capizzano,et al.  Multigrid Methods for Multilevel Circulant Matrices , 2004, SIAM J. Sci. Comput..

[12]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[13]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[14]  Stefano Serra Capizzano,et al.  Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002, Numerische Mathematik.

[15]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[16]  S. Serra-Capizzano A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003 .

[17]  Xiao-Qing Jin,et al.  Convergence of the Multigrid Method of Ill-conditioned Block Toeplitz Systems , 2001 .

[18]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[19]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[20]  Stefano Serra,et al.  Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems , 1994 .

[21]  Stefano Serra Capizzano,et al.  Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear , 2000, SIAM J. Matrix Anal. Appl..

[22]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[23]  Raymond H. Chan,et al.  Multigrid Method for Ill-Conditioned Symmetric Toeplitz Systems , 1998, SIAM J. Sci. Comput..

[24]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .

[25]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[26]  Stefano Serra Capizzano,et al.  A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2004, SIAM J. Sci. Comput..

[27]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[28]  Stefano Serra Capizzano,et al.  On the Regularizing Power of Multigrid-type Algorithms , 2005, SIAM J. Sci. Comput..

[29]  D. Manolakis,et al.  Fast algorithms for block toeplitz matrices with toeplitz entries , 1984 .

[30]  Paola Favati,et al.  On a matrix algebra related to the discrete Hartley transform , 1993 .