Consistency of option prices under bid–ask spreads

Abstract Given a finite set of European call option prices on a single underlying, we want to know when there is a market model that is consistent with these prices. In contrast to previous studies, we allow models where the underlying trades at a bid–ask spread. The main question then is how large (in terms of a deterministic bound) this spread must be to explain the given prices. We fully solve this problem in the case of a single maturity, and give several partial results for multiple maturities. For the latter, our main mathematical tool is a recent result on approximation by peacocks.

[1]  Valdo Durrleman,et al.  From implied to spot volatilities , 2008, Finance Stochastics.

[2]  Antoine Jacquier The large-time smile and skew for exponential Levy models , 2011 .

[3]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[4]  Y. Kabanov,et al.  The Harrison-Pliska arbitrage pricing theorem under transaction costs , 2001 .

[5]  Ludger Rüschendorf,et al.  On the optimal stopping values induced by general dependence structures , 2001, Journal of Applied Probability.

[6]  Roger Lee THE MOMENT FORMULA FOR IMPLIED VOLATILITY AT EXTREME STRIKES , 2004 .

[7]  Hans U. Gerber,et al.  An introduction to mathematical risk theory , 1982 .

[8]  Mark H. A. Davis,et al.  THE RANGE OF TRADED OPTION PRICES , 2007 .

[9]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[10]  H. Kellerer,et al.  Markov-Komposition und eine Anwendung auf Martingale , 1972 .

[11]  B. Roynette,et al.  A new proof of Kellerer’s theorem , 2012 .

[12]  Peter Friz,et al.  SMILE ASYMPTOTICS II: MODELS WITH KNOWN MOMENT GENERATING FUNCTIONS , 2006 .

[13]  Peter Tankov,et al.  Asymptotic results for time-changed Lévy processes sampled at hitting times , 2011 .

[14]  S. Gerhold,et al.  A variant of Strassen's theorem: Existence of martingales within a prescribed distance , 2015 .

[15]  N. Touzi,et al.  The maximum maximum of a martingale with given $n$ marginals , 2016 .

[16]  P. Carr,et al.  A note on sufficient conditions for no arbitrage , 2005 .

[17]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[18]  N. Touzi,et al.  The maximum maximum of a martingale with given $\mathbf{n}$ marginals , 2012, 1203.6877.

[19]  P. Wilmott,et al.  An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs , 1997 .

[20]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[21]  F. e. Calcul des Probabilités , 1889, Nature.

[22]  José E. Figueroa-López,et al.  Short-time asymptotics for the implied volatility skew under a stochastic volatility model with L\'evy jumps , 2015, 1502.02595.

[23]  W. Schachermayer The Fundamental Theorem of Asset Pricing under Proportional Transaction Costs in Finite Discrete Time , 2004 .

[24]  Implied volatility explosions: European calls and implied volatilities close to expiry in exponential L\'evy models , 2008, 0809.3305.

[25]  Yu. V. Prokhorov Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .

[26]  S. Gerhold Can There Be an Explicit Formula for Implied Volatility? , 2012, 1211.4978.

[27]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[28]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[29]  Stefan Gerhold,et al.  On refined volatility smile expansion in the Heston model , 2010, 1001.3003.

[30]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[31]  Jos'e E. Figueroa-L'opez,et al.  Small-time expansions for the transition distributions of Lévy processes , 2008, 0809.0849.

[32]  M. Huesmann,et al.  Root to Kellerer , 2015, 1507.07690.

[33]  Michael Roper,et al.  ON THE RELATIONSHIP BETWEEN THE CALL PRICE SURFACE AND THE IMPLIED VOLATILITY SURFACE CLOSE TO EXPIRY , 2009 .

[34]  M. Goovaerts,et al.  On Stop-Loss Premiums for the Individual Model , 1988, ASTIN Bulletin.

[35]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[36]  Maxim Bichuch,et al.  Pricing a contingent claim liability with transaction costs using asymptotic analysis for optimal investment , 2011, Finance Stochastics.

[37]  Jean Jacod,et al.  Is Brownian motion necessary to model high-frequency data? , 2010, 1011.2635.

[38]  Jean-Philippe Bouchaud,et al.  We've walked a million miles for one of these smiles , 2012 .

[39]  P. Tankov Pricing and Hedging in Exponential Lévy Models: Review of Recent Results , 2011 .

[40]  Peter Carr,et al.  Explicit Constructions of Martingales Calibrated to Given Implied Volatility Smiles , 2011, SIAM J. Financial Math..

[41]  Leif Andersen,et al.  Asymptotics for Exponential Levy Processes and Their Volatility Smile: Survey and New Results , 2012, 1206.6787.

[42]  Adam M. Oberman The convex envelope is the solution of a nonlinear obstacle problem , 2007 .

[43]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[44]  S. Gerhold,et al.  Small time central limit theorems for semimartingales with applications , 2012, 1208.4282.

[45]  C. Houdr'e,et al.  Small-time expansions of the distributions, densities, and option prices of stochastic volatility models with Lévy jumps , 2010, 1009.4211.

[46]  Jan Dhaene,et al.  Error Bounds for Compound Poisson Approximations of the Individual Risk Model , 1992, ASTIN Bulletin.

[47]  W. Schachermayer Asymptotic Theory of Transaction Costs , 2017 .

[48]  Thierry Champion,et al.  The ∞-Wasserstein Distance: Local Solutions and Existence of Optimal Transport Maps , 2008, SIAM J. Math. Anal..

[49]  E. Mordecki,et al.  Symmetry and duality in Lévy markets , 2006 .

[50]  Expensive martingales , 2006 .

[51]  José E. Figueroa-López,et al.  HIGH‐ORDER SHORT‐TIME EXPANSIONS FOR ATM OPTION PRICES OF EXPONENTIAL LÉVY MODELS , 2012, 1208.5520.

[52]  The sup metric on infinite products , 1991, Bulletin of the Australian Mathematical Society.

[53]  On Asymptotic Behavior of Some Functionals of Processes with Independent Increments , 1971 .

[54]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[55]  Albrecht Irle,et al.  Good Portfolio Strategies under Transaction Costs: A Renewal Theoretic Approach , 2006 .

[56]  Jorge A. León,et al.  On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility , 2006, Finance Stochastics.

[57]  Iddo Ben-Ari,et al.  Ergodic behavior of diffusions with random jumps from the boundary , 2009 .

[58]  Stefan Gerhold,et al.  The Small Maturity Implied Volatility Slope for L\'evy Models , 2013 .

[59]  F. Hirsch Peacocks and Associated Martingales, with Explicit Constructions , 2011 .

[60]  Peter Tankov,et al.  A New Look at Short‐Term Implied Volatility in Asset Price Models with Jumps , 2012 .

[61]  ALFRED MÜLLER,et al.  Stochastic Order Relations and Lattices of Probability Measures , 2006, SIAM J. Optim..

[62]  P. Carr,et al.  What Type of Process Underlies Options? A Simple Robust Test , 2003 .

[63]  Afra Zomorodian,et al.  Computational topology , 2010 .

[64]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[65]  L. C. G. Rogers,et al.  The relaxed investor and parameter uncertainty , 2001, Finance Stochastics.

[66]  V. Strassen The Existence of Probability Measures with Given Marginals , 1965 .

[67]  Mark H. A. Davis,et al.  European option pricing with transaction costs , 1993 .

[68]  Telling from Discrete Data Whether the Underlying Continuous-Time Model is a Diffusion , 2002 .

[69]  Laurent Cousot,et al.  Conditions on Option Prices for Absence of Arbitrage and Exact Calibration , 2006 .

[70]  R. Doney,et al.  Stability and Attraction to Normality for Lévy Processes at Zero and at Infinity , 2002 .

[71]  R. P. Kertz,et al.  Complete lattices of probability measures with applications to martingale theory , 2000 .

[72]  G. Lowther Fitting Martingales To Given Marginals , 2008, 0808.2319.

[73]  D. A. Edwards On the existence of probability measures with given marginals , 1978 .

[74]  Characterization of Market Models in the Presence of Traded Vanilla and Barrier Options , 2014, 1411.4193.

[75]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[76]  B. Tavin Detection of Arbitrage in a Market with Multi-Asset Derivatives and Known Risk-Neutral Marginals , 2012 .

[77]  Giles Peter Jewitt,et al.  The Volatility Surface , 2015 .

[78]  T. Lindvall ON STRASSEN'S THEOREM ON STOCHASTIC DOMINATION , 1999 .

[79]  José E. Figueroa-López,et al.  The Small-Maturity Smile for Exponential Lévy Models , 2011, SIAM J. Financial Math..

[80]  B. Armbruster A Short Proof of Strassen's Theorem Using Convex Analysis , 2016, 1603.00137.

[81]  A. R. Norman,et al.  Portfolio Selection with Transaction Costs , 1990, Math. Oper. Res..

[82]  R. Dudley Distances of Probability Measures and Random Variables , 1968 .