Squalene hopene cyclases and oxido squalene cyclases: potential targets for regulating cyclisation reactions

[1]  Ana I. Benítez-Mateos,et al.  Spheroplasts preparation boosts the catalytic potential of a squalene-hopene cyclase , 2022, Nature Communications.

[2]  U. Bornscheuer,et al.  Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases , 2021, Angewandte Chemie.

[3]  B. Nestl,et al.  Enzymatic Friedel‐Crafts Alkylation Using Squalene‐Hopene Cyclases , 2021 .

[4]  J. Pronk,et al.  A squalene-hopene cyclase in Schizosaccharomyces japonicus represents a eukaryotic adaptation to sterol-independent anaerobic growth , 2021, bioRxiv.

[5]  K. Jayachandran,et al.  In Vitro Enzymatic Conversion of Glibenclamide Using Squalene Hopene Cyclase from Pseudomonas mendocina Expressed in E. coli BL21 (DE3) , 2020, Molecular Biotechnology.

[6]  C. Xue,et al.  A Novel Soluble Squalene-Hopene Cyclase and Its Application in Efficient Synthesis of Hopene , 2020, Frontiers in Bioengineering and Biotechnology.

[7]  J. D. Connolly,et al.  Triterpenoids. , 2020, Natural product reports.

[8]  I. M. Nair,et al.  In silico characterization and over-expression of squalene hopene cyclase from Pseudomonas mendocina , 2019, 3 Biotech.

[9]  L. Fourage,et al.  Biocatalytic Process for (−)‐Ambrox Production Using Squalene Hopene Cyclase , 2018 .

[10]  T. Hoshino,et al.  Squalene‐Hopene Cyclase: On the Polycyclization Reactions of Squalene Analogues Bearing Ethyl Groups at Positions C‐6, C‐10, C‐15, and C‐19 , 2018 .

[11]  Joerg H. Schrittwieser,et al.  Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. , 2018, Chemical reviews.

[12]  Surinder P. Singh,et al.  Microbial bio transformation: a process for chemical alterations , 2017 .

[13]  Jeremy H. Wei,et al.  Sterol Synthesis in Diverse Bacteria , 2016, Front. Microbiol..

[14]  F. Di Nicolantonio,et al.  The cholesterol biosynthesis enzyme oxidosqualene cyclase is a new target to impair tumour angiogenesis and metastasis dissemination , 2015, Scientific Reports.

[15]  Ruoting Zhan,et al.  Characterisation of Two Oxidosqualene Cyclases Responsible for Triterpenoid Biosynthesis in Ilex asprella , 2015, International journal of molecular sciences.

[16]  A. Osbourn,et al.  Triterpene biosynthesis in plants. , 2014, Annual review of plant biology.

[17]  K C Nicolaou,et al.  Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  N. Kyrpides,et al.  Complete genome sequence of Sphaerobacter thermophilus type strain (S 6022) , 2014 .

[19]  B. Nestl,et al.  Squalene hopene cyclases: highly promiscuous and evolvable catalysts for stereoselective CC and CX bond formation. , 2013, Current opinion in chemical biology.

[20]  E. Sikora,et al.  Production of triterpenoids with cell and tissue cultures. , 2013, Acta biochimica Polonica.

[21]  B. Hauer,et al.  Substrate specificity of a novel squalene-hopene cyclase from Zymomonas mobilis , 2012 .

[22]  J. Pleiss,et al.  The triterpene cyclase protein family: A systematic analysis , 2012, Proteins.

[23]  Jia Li,et al.  Note added in proof to: Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus , 2012, Planta.

[24]  A. Osbourn,et al.  Divergent evolution of oxidosqualene cyclases in plants. , 2012, The New phytologist.

[25]  Lili Huang,et al.  Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus , 2012, Planta.

[26]  V. Vyas,et al.  Homology Modeling a Fast Tool for Drug Discovery: Current Perspectives , 2012, Indian journal of pharmaceutical sciences.

[27]  P. Ascenzi,et al.  Potential role of nonstatin cholesterol lowering agents , 2011, IUBMB life.

[28]  Graham J. Etherington,et al.  Investigation of the potential for triterpene synthesis in rice through genome mining and metabolic engineering. , 2011, The New phytologist.

[29]  D. Jendrossek,et al.  Squalene-Hopene Cyclases , 2011, Applied and Environmental Microbiology.

[30]  Chiaki Nakano,et al.  Triterpene cyclases from Oryza sativa L.: cycloartenol, parkeol and achilleol B synthases. , 2011, Organic letters.

[31]  Aleksandra Rudnitskaya,et al.  Molecular docking of enzyme inhibitors , 2010, Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology.

[32]  N. Kyrpides,et al.  Complete genome sequence of Sphaerobacter thermophilus type strain (S 6022T) , 2010, Standards in Genomic Sciences.

[33]  R. Loria,et al.  Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. , 2010, Molecular plant-microbe interactions : MPMI.

[34]  M. Cushion,et al.  Functional Characterization and Localization of Pneumocystis carinii Lanosterol Synthase , 2009, Eukaryotic Cell.

[35]  P. D’haeseleer,et al.  Complete genome sequence of Saccharomonospora viridis type strain (P101T) , 2009, Standards in genomic sciences.

[36]  N. Kyrpides,et al.  Complete genome sequence of Catenulispora acidiphila type strain (ID 139908T) , 2009, Standards in genomic sciences.

[37]  Brian P. Anton,et al.  The Complete Genome of Teredinibacter turnerae T7901: An Intracellular Endosymbiont of Marine Wood-Boring Bivalves (Shipworms) , 2009, PloS one.

[38]  W. K. Wilson,et al.  Product profile of PEN3: the last unexamined oxidosqualene cyclase in Arabidopsis thaliana. , 2009, Organic letters.

[39]  Alla Lapidus,et al.  Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. , 2009, Genome research.

[40]  J. Sohng,et al.  Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization , 2009, Biotechnology Letters.

[41]  C. Larroche,et al.  Characterization of monoterpene biotransformation in two pseudomonads , 2008, Journal of applied microbiology.

[42]  Y. Ebizuka,et al.  Squalene cyclase and oxidosqualene cyclase from a fern , 2008, FEBS letters.

[43]  I. Abe Enzymatic synthesis of cyclic triterpenes. , 2007, Natural product reports.

[44]  R. Kirby,et al.  Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system , 2007, Antonie van Leeuwenhoek.

[45]  Lei Wang,et al.  Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir , 2007, Proceedings of the National Academy of Sciences.

[46]  Jacob R Waldbauer,et al.  Steroids, triterpenoids and molecular oxygen , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  B. Bartel,et al.  Biosynthetic diversity in plant triterpene cyclization. , 2006, Current opinion in plant biology.

[48]  P. Džubák,et al.  Pharmacological activities of natural triterpenoids and their therapeutic implications. , 2006, Natural product reports.

[49]  D. Christianson,et al.  Structural biology and chemistry of the terpenoid cyclases. , 2006, Chemical reviews.

[50]  I. Abe,et al.  Enzymatic formation of pyrrole-containing novel cyclic polyprenoids by bacterial squalene:hopene cyclase , 2006 .

[51]  Hideyuki Suzuki,et al.  Plant lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes. , 2006, Plant & cell physiology.

[52]  Kazuki Saito,et al.  Lanosterol synthase in dicotyledonous plants. , 2006, Plant & cell physiology.

[53]  Q. Xiong,et al.  Lanosterol biosynthesis in plants. , 2006, Archives of biochemistry and biophysics.

[54]  T. Schulz-Gasch,et al.  Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies. , 2005, Biochemical Society transactions.

[55]  K. Yamato,et al.  Cloning and characterization of a cDNA encoding beta-amyrin synthase from petroleum plant Euphorbia tirucalli L. , 2005, Phytochemistry.

[56]  J. Volkman Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways , 2005 .

[57]  Katherine H. Kang,et al.  Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus (Bath) , 2004, PLoS biology.

[58]  T. Hoshino,et al.  Enzymatic cyclization reactions of geraniol, farnesol and geranylgeraniol, and those of truncated squalene analogs having C20 and C25 by recombinant squalene cyclase. , 2004, Organic & biomolecular chemistry.

[59]  H. Hayashi,et al.  Differential expression of three oxidosqualene cyclase mRNAs in Glycyrrhiza glabra. , 2004, Biological & pharmaceutical bulletin.

[60]  D. Lelie,et al.  Colonisation of poplar trees by gfp expressing bacterial endophytes. , 2004, FEMS microbiology ecology.

[61]  H. Schaller,et al.  Molecular cloning and expression in yeast of 2,3–oxidosqualene– triterpenoid cyclases from Arabidopsis thaliana , 2004, Plant Molecular Biology.

[62]  A. Pearson,et al.  Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Martin Stahl,et al.  Mechanistic insights into oxidosqualene cyclizations through homology modeling , 2003, J. Comput. Chem..

[64]  H. Reichenbach,et al.  Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)‐oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca , 2003, Molecular microbiology.

[65]  G. Schulz,et al.  Crystal structure of a squalene cyclase in complex with the potential anticholesteremic drug Ro48-8071. , 2002, Chemistry & biology.

[66]  M. Ikeuchi,et al.  Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. , 2002, DNA research : an international journal for rapid publication of reports on genes and genomes.

[67]  W. K. Wilson,et al.  Oxidosqualene Cyclase Residues that Promote Formation of Cycloartenol, Lanosterol, and Parkeol , 2000 .

[68]  E. Pichersky,et al.  Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. , 2000, Trends in plant science.

[69]  K. Poralla,et al.  Hopanoid Biosynthesis and Function in Bacteria , 1999, Naturwissenschaften.

[70]  K. Poralla,et al.  Squalene-hopene cyclase from Methylococcus capsulatus (Bath): a bacterium producing hopanoids and steroids. , 1998, Biochimica et biophysica acta.

[71]  T. Hoshino,et al.  Overexpression of squalene-hopene cyclase by the pET vector in Escherichia coli and first identification of tryptophan and aspartic acid residues inside the QW motif as active sites. , 1998, Bioscience, biotechnology, and biochemistry.

[72]  G. Schulz,et al.  Structure and function of a squalene cyclase. , 1997, Science.

[73]  K. Poralla,et al.  Squalene-hopene cyclase from Bradyrhizobium japonicum: cloning, expression, sequence analysis and comparison to other triterpenoid cyclases. , 1997, Microbiology.

[74]  D. A. Dougherty,et al.  Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp , 1996, Science.

[75]  R. Croteau,et al.  Terpenoid metabolism. , 1995, The Plant cell.

[76]  K. Poralla,et al.  Zymomonas mobilis squalene-hopene cyclase gene (shc): cloning, DNA sequence analysis, and expression in Escherichia coli. , 1995, Microbiology.

[77]  J. Ericsson,et al.  Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. , 1994, Biochimica et biophysica acta.

[78]  G. Prestwich,et al.  A specific amino acid repeat in squalene and oxidosqualene cyclases. , 1994, Trends in biochemical sciences.

[79]  富田 耕右,et al.  Zymomonas mobilis由来グルコキナ-ゼの特性 , 1994 .

[80]  K. Poralla,et al.  Purification and properties of the squalene-hopene cyclase from Rhodopseudomonas palustris, a purple non-sulfur bacterium producing hopanoids and tetrahymanol. , 1994, Biochimica et biophysica acta.

[81]  E. Corey,et al.  Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[82]  G. Prestwich,et al.  ENZYMATIC CYCLIZATION OF SQUALENE AND OXIDOSQUALENE TO STEROLS AND TRITERPENES , 1993 .

[83]  汪清胤,et al.  大豆根瘤菌(Bradyrhizobium japonicum)苹... , 1993 .

[84]  H. Sahm,et al.  Biochemistry and physiology of hopanoids in bacteria. , 1993, Advances in microbial physiology.

[85]  K. Entian,et al.  Cloning, expression, and sequencing of squalene-hopene cyclase, a key enzyme in triterpenoid metabolism , 1992, Journal of bacteriology.

[86]  G. Ourisson,et al.  Purification and some properties of the squalene-tetrahymanol cyclase from Tetrahymena thermophila. , 1991, Biochimica et biophysica acta.

[87]  K. Poralla,et al.  Characterization and partial purification of squalene-hopene cyclase from Bacillus acidocaldarius , 1986 .

[88]  G. Ourisson,et al.  Delta8(14)-steroids in the bacterium Methylococcus capsulatus. , 1976, The Biochemical journal.

[89]  J. Lynch,et al.  Steroids and Squalene in Methylococcus capsulatus grown on Methane , 1971, Nature.