Product design by application of Taguchi's robust engineering using computer simulation

This article discusses the application of Taguchi's robust parameter design (RPD) approach in the design of a motor in a large electrical company in India. There used to be specific customer requirements related to temperature rise and low efficiency of the existing model of motor, which the organisation was unable to meet. Taguchi's parameter design approach was successfully applied to derive the optimum design. Orthogonal arrays were used to design the experiments with 13 control factors, each at 3 levels and 2 noise factors. The experimentation was carried out by a computer simulation and the data were analysed using signal-to-noise ratio method. From the analysis of variance along with main effect plots, the optimum factor level combination for the new product was reached. As per the optimum design, prototype was made and tested with respect to the customer requirements and was found to give satisfactory results for all performance characteristics. This approach has given the result in just 10 weeks' time, whereas the traditional design approach used to take 12 to 15 months to arrive at the optimum design values.

[1]  Flavio S. Fogliatto,et al.  Robust design and analysis for quality engineering , 1997 .

[2]  Abdessamad Kobi,et al.  ROBUST DESIGN: A SIMPLE ALTERNATIVE TO TAGUCHI'S PARAMETER DESIGN APPROACH , 2001 .

[3]  Anna C. Thornton,et al.  More than Just Robust Design: Why Product Development Organizations Still Contend with Variation and its Impact on Quality , 2000 .

[4]  Stephen Jones,et al.  Split-plot designs for robust product experimentation , 1992 .

[5]  Thong Ngee Goh,et al.  Taguchi methods: Some technical, cultural and pedagogical perspectives , 1993 .

[6]  R. Roy A Primer on the Taguchi Method , 1990 .

[7]  Stefan H. Steiner,et al.  Reducing Variation in an Existing Process with Robust Parameter Design , 2009 .

[8]  Shreyes N. Melkote,et al.  Design and Analysis of Computer Experiments With Branching and Nested Factors , 2009, Technometrics.

[9]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[10]  Paul G. Maropoulos,et al.  Integrated optimisation of surface roughness and tool performance when face milling 416 SS , 2010, Int. J. Comput. Integr. Manuf..

[11]  Dorian Shainin,et al.  Better than Taguchi orthogonal tables , 1988 .

[12]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[13]  E. V. Gijo,et al.  Reducing rejection and rework by application of Six Sigma methodology in manufacturing process , 2010 .

[14]  Lai K. Chan,et al.  Combined Robust Design , 1995 .

[15]  C. Butler,et al.  A primer on the Taguchi method , 1992 .

[16]  Thomas W. Lee,et al.  Using Qualitative Methods in Organizational Research , 1998 .

[17]  R. N. Kackar Off-Line Quality Control, Parameter Design, and the Taguchi Method , 1985 .

[18]  David M. Steinberg,et al.  NOISE FACTORS, DISPERSION EFFECTS, AND ROBUST DESIGN , 1993 .

[19]  Peder Andersson Robustness of Technical Systems in Relation to Quality, Reliability and Associated Concepts , 1997 .

[20]  Yves L. Grize,et al.  A review of robust process design approaches , 1995 .

[21]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[22]  田口 玄一,et al.  Taguchi on robust technology development : bringing quality engineering upstream , 1993 .

[23]  Genichii Taguchi,et al.  Introduction to quality engineering. designing quality into products a , 1986 .

[24]  C. R. Rao,et al.  Factorial Experiments Derivable from Combinatorial Arrangements of Arrays , 1947 .

[25]  田口 玄一,et al.  Introduction to quality engineering : designing quality into products and processes , 1986 .

[26]  William A. Brenneman,et al.  Robust Parameter Design with Categorical Noise Variables , 2003 .

[27]  R. H. Myers,et al.  Response Surface Alternatives to the Taguchi Robust Parameter Design Approach , 1992 .

[28]  Raghu N. Kacker,et al.  Performance measures independent of adjustment , 1987 .

[29]  William A. Brenneman,et al.  A Dual-Response Approach to Robust Parameter Design for a Generalized Linear Model , 2005 .

[30]  Conrad A. Fung,et al.  An explanation and critique of taguchi's contributions to quality engineering , 1988 .

[31]  G. Geoffrey Vining,et al.  Combining Taguchi and Response Surface Philosophies: A Dual Response Approach , 1990 .

[32]  W. C. Benton Statistical process control and the Taguchi method: a comparative evaluation , 1991 .

[33]  Kwok-Leung Tsui,et al.  Economical experimentation methods for robust design , 1991 .

[34]  R. N. Kackar Taguchi’s Quality Philosophy: Analysis and Commentary , 1989 .

[35]  Angus Jeang,et al.  A computer model for time-based tolerance design with response surface methodology , 2002, Int. J. Comput. Integr. Manuf..

[36]  E. V. Gijo Improving Process Capability of Manufacturing Process by Application of Statistical Techniques , 2005 .

[37]  E. V. Gijo,et al.  Application of Taguchi method to optimise the characteristics of green sand in a foundry , 2011 .

[38]  Connie M. Borror,et al.  Robust Parameter Design: A Review , 2004 .

[39]  William A. Brenneman,et al.  Process Optimization via Robust Parameter Design when Categorical Noise Factors are Present , 2006, Qual. Reliab. Eng. Int..

[40]  Yi-Chi Wang,et al.  A computational simulation approach for optimising process parameters in cutting operations , 2010, Int. J. Comput. Integr. Manuf..

[41]  G. Geoffrey Vining,et al.  Taguchi's parameter design: a panel discussion , 1992 .

[42]  John A. Nelder,et al.  Robust Design via Generalized Linear Models , 2003 .

[43]  Martín Tanco,et al.  Planning Experiments, the First Real Task in Reaching a Goal , 2008 .

[44]  Ida Gremyr,et al.  Robust Design Methodology: Status in the Swedish Manufacturing Industry , 2003 .

[45]  R. N. Kackar Response: Off-Line Quality Control, Parameter Design, and the Taguchi Method , 1985 .

[46]  Jerome Sacks,et al.  Computer Experiments for Quality Control by Parameter Design , 1990 .

[47]  Susan Greener,et al.  Business Research Methods , 2008 .

[48]  Wei Jiang,et al.  The Mahalanobis–Taguchi Strategy , 2003, Technometrics.

[49]  Angus Jeang,et al.  Tolerance design: Choosing optimal tolerance specifications in the design of machined parts , 1994 .

[50]  J. Engel,et al.  A generalized linear modeling approach to robust design , 1996 .

[51]  J. Stuart Hunter,et al.  Statistical Design Applied to Product Design , 1985 .

[52]  James M. Lucas,et al.  How to Achieve a Robust Process Using Response Surface Methodology , 1994 .

[53]  C. F. Jeff Wu,et al.  Experiments: Planning, Analysis, and Parameter Design Optimization , 2000 .

[54]  Jose Antonio Sanchez,et al.  A computer-aided system for the optimization of the accuracy of the wire electro-discharge machining process , 2004, Int. J. Comput. Integr. Manuf..

[55]  Joanne Wendelberger,et al.  Uncertainty in Designed Experiments , 2010 .

[56]  E. V. Gijo,et al.  Quality improvement by reducing variation: A case study , 2003 .

[57]  Suat Tanaydin Robust Design and Analysis for Quality Engineering , 1996 .

[58]  E. V. Gijo,et al.  Quality in the construction industry: An application of DOE with goal programming , 2008 .

[59]  Douglas C. Montgomery,et al.  Robust Parameter Design Using Generalized Linear Mixed Models , 2006 .

[60]  James M. Lucas,et al.  Designs of mixed resolution for process robustness studies , 1997 .

[61]  Tae Hee Lee,et al.  Robust Design: An Overview , 2006 .

[62]  Connie M. Borror,et al.  Response Surface Methodology: A Retrospective and Literature Survey , 2004 .

[63]  Donald R. Cooper,et al.  Business Research Methods , 1980 .

[64]  Joseph J. Pignatiello,et al.  TOP TEN TRIUMPHS AND TRAGEDIES OF GENICHI TAGUCHI , 1991 .

[65]  J. Senturia System of Experimental Design (Vol. 2) , 1989 .

[66]  Jonathan Smith,et al.  A method for assessing the robustness of mechanical designs , 2005 .

[67]  T. R. Bement,et al.  Taguchi techniques for quality engineering , 1995 .