The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence

We propose a modified Levenberg-Marquardt method for nonlinear equations, in which not only a LM step but also an approximate LM step are computed at every iteration. To ensure the global convergence of the new method, a new kind of predicted reduction is introduced for the merit function when using the trust region technique. The cubic convergence of the modified LM method is proved under the local error bound condition which is weaker than nonsingularity. Numerical results show that the new method is very efficient and could save many calculations of the Jacobian.

[1]  M. Powell CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .

[2]  Jin-yanFan A MODIFIED LEVENBERG-MARQUARDT ALGORITHM FOR SINGULAR SYSTEM OF NONLINEAR EQUATIONS , 2003 .

[3]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[4]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[5]  Participating Partners: UCL , 2005 .

[6]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[7]  R. Schnabel,et al.  Tensor Methods for Nonlinear Equations. , 1984 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[10]  Jorge J. Moré,et al.  Recent Developments in Algorithms and Software for Trust Region Methods , 1982, ISMP.

[11]  Ya-Xiang Yuan,et al.  Optimization theory and methods , 2006 .

[12]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[13]  Ya-Xiang Yuan,et al.  Trust Region Algorithms for Nonlinear Equations , 1994 .

[14]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[15]  Jinyan Fan,et al.  A note on the Levenberg-Marquardt parameter , 2009, Appl. Math. Comput..

[16]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[17]  Ya-Xiang Yuan,et al.  On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption , 2005, Computing.

[18]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .