Finite simple groups whose Sylow 2-subgroups are of order 27
暂无分享,去创建一个
[1] Z. Janko. The nonexistence of a certain type of finite simple group , 1971 .
[2] Kok-Wee Phan. A Characterization of the finite simple group L4(3) , 1969, Journal of the Australian Mathematical Society.
[3] John H. Walter,et al. The Characterization of Finite Groups with Abelian Sylow 2-Subgroups , 1969 .
[4] W. J. Wong. A characterization of the finite projective symplectic groups , 1969 .
[5] K. Harada. Finite simple groups with short chains of subgroups , 1968 .
[6] Dieter Held. A characterization of some multiply transitive permutation groups, II , 1968 .
[7] Z. Janko. A characterization of the Mathieu simple groups, II , 1968 .
[8] Dieter Held. A characterization of the alternating groups of degrees eight and nine , 1967 .
[9] George Glauberman,et al. Central elements in core-free groups , 1966 .
[10] W. J. Wong. A characterization of the Mathieu groupM12 , 1964 .
[11] Jonathan L. Alperin,et al. Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups. , 1970 .
[12] Zvonimir Janko,et al. Some new simple groups of finite order , 1967 .
[13] Z. Janko. A Characterization of the Finite Simple Group PSp4(3) , 1967, Canadian Journal of Mathematics.
[14] Daniel Gorenstein,et al. The characterization of nite groups with dihedral Sylow 2 - subgroups , 1964 .
[15] Wolfgang Gaschütz,et al. Zur Erweiterungstheorie der endlichen Gruppen. , 1952 .