The JCMT Legacy Survey of the Gould Belt: mapping 13CO and C18O in Orion A

The Gould Belt Legacy Survey will map star-forming regions within 500 pc, using Heterodyne Array Receiver Programme (HARP), Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and Polarimeter 2 (POL-2) on the James Clerk Maxwell Telescope (JCMT). This paper describes HARP observations of the J= 3 → 2 transitions of 13CO and C18O towards Orion A. The 15 arcsec resolution observations cover 5 pc of the Orion filament, including OMC 1 (including BN–KL and Orion bar), OMC 2/3 and OMC 4, and allow a comparative study of the molecular gas properties throughout the star-forming cloud. The filament shows a velocity gradient of ∼1 km s−1 pc−1 between OMC 1, 2 and 3, and high-velocity emission is detected in both isotopologues. The Orion Nebula and Bar have the largest masses and linewidths, and dominate the mass and energetics of the high-velocity material. Compact, spatially resolved emission from CH3CN, 13CH3OH, SO, HCOOCH3, CH3CHO and CH3OCHO is detected towards the Orion Hot Core. The cloud is warm, with a median excitation temperature of ∼24 K; the Orion Bar has the highest excitation temperature gas, at >80 K. The C18O excitation temperature correlates well with the dust temperature (to within 40 per cent). The C18O emission is optically thin, and the 13CO emission is marginally optically thick; despite its high mass, OMC 1 shows the lowest opacities. A virial analysis indicates that Orion A is too massive for thermal or turbulent support, but is consistent with a model of a filamentary cloud that is threaded by helical magnetic fields. The variation of physical conditions across the cloud is reflected in the physical characteristics of the dust cores. We find similar core properties between starless and protostellar cores, but variations in core properties with position in the filament. The OMC 1 cores have the highest velocity dispersions and masses, followed by OMC 2/3 and OMC 4. The differing fragmentation of these cores may explain why OMC 1 has formed clusters of high-mass stars, whereas OMC 4 produces fewer, predominantly low-mass stars.

[1]  N. Evans,et al.  OBSERVATIONAL CONSTRAINTS ON SUBMILLIMETER DUST OPACITY , 2010, 1012.3488.

[2]  J. Bally,et al.  EXPLOSIVE OUTFLOWS POWERED BY THE DECAY OF NON-HIERARCHICAL MULTIPLE SYSTEMS OF MASSIVE STARS: ORION BN/KL , 2010, 1011.5512.

[3]  D. Johnstone,et al.  “STARLESS” SUPER-JEANS CORES IN FOUR GOULD BELT CLOUDS , 2010, 1006.1924.

[4]  G. Fuller,et al.  The JCMT Legacy Survey of the Gould Belt: a first look at Serpens with HARP: GBS: first look at Serpens , 2010, 1006.0891.

[5]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[6]  D. Padgett,et al.  THE MASS DISTRIBUTION OF STARLESS AND PROTOSTELLAR CORES IN GOULD BELT CLOUDS , 2010, 1001.0978.

[7]  J. Buckle,et al.  A submillimetre survey of the kinematics of the Perseus molecular cloud – I. Data , 2009, 0909.0707.

[8]  D. Ward-Thompson,et al.  The JCMT Legacy Survey of the Gould Belt: a first look at Orion B with HARP , 2009, 0908.4162.

[9]  T. Jenness,et al.  HARP/ACSIS: a submillimetre spectral imaging system on the James Clerk Maxwell Telescope , 2009, 0907.3610.

[10]  P. Ade,et al.  90 GHz AND 150 GHz OBSERVATIONS OF THE ORION M42 REGION. A SUBMILLIMETER TO RADIO ANALYSIS , 2009, 0907.1300.

[11]  B. Reipurth Handbook of Star Forming Regions, Volume I: The Northern Sky , 2008 .

[12]  S. Sakai,et al.  SiO Maser Observations toward Orion-KL with VERA , 2008 .

[13]  L. Greenhill,et al.  A 42.3–43.6 GHz SPECTRAL SURVEY OF ORION BN/KL: FIRST DETECTION OF THE v = 0 J = 1–0 LINE FROM THE ISOTOPOLOGUES 29SiO AND 30SiO , 2008, 0810.1140.

[14]  Y. Sekimoto,et al.  N2H+ and HC3N Observations of the Orion A Cloud , 2008, 0804.0111.

[15]  A. Goodman,et al.  CO Isotopologues in the Perseus Molecular Cloud Complex: the X-factor and Regional Variations , 2008, 0802.0708.

[16]  P. Bernath,et al.  A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite II. Data analysis , 2007, 0910.1815.

[17]  P. Bernath,et al.  A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite: I. The observational data , 2007, 0910.1825.

[18]  K. Menten,et al.  The distance to the Orion Nebula , 2007, 0709.0485.

[19]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[20]  A. Whitworth,et al.  The James Clerk Maxwell Telescope Legacy Survey of Nearby Star‐forming Regions in the Gould Belt , 2007, 0707.0169.

[21]  D. Ward-Thompson,et al.  A SCUBA survey of Orion -the low-mass end of the core mass function , 2006, astro-ph/0611164.

[22]  Douglas Scott,et al.  SCUBA-2: a 10,000-pixel submillimeter camera for the James Clerk Maxwell Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[23]  M. Barlow,et al.  A far-infrared molecular and atomic line survey of the Orion KL region , 2006, astro-ph/0605410.

[24]  C. Aspin,et al.  Astronomical Polarimetry: Current Status and Future Directions , 2005 .

[25]  M. Reid,et al.  Line Imaging of Orion KL at 865 μm with the Submillimeter Array , 2005, astro-ph/0506603.

[26]  G. Fuller,et al.  Star formation in Perseus - Clusters, filaments and the conditions for star formation , 2005, astro-ph/0505444.

[27]  F. Motte,et al.  A Molecular Line Survey of Orion KL in the 350 Micron Band , 2005 .

[28]  C. Brunt,et al.  The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.

[29]  D. Johnstone,et al.  Astrochemistry of sub-millimeter sources in Orion. Studying the variations of molecular tracers with changing physical conditions , 2003, astro-ph/0310166.

[30]  Jonathan P. Williams,et al.  High-Resolution Imaging of CO Outflows in OMC-2 and OMC-3 , 2003, astro-ph/0303443.

[31]  Jeong-Eun Lee,et al.  Chemistry and Dynamics in Pre-protostellar Cores , 2002, astro-ph/0212178.

[32]  M. Mccaughrean,et al.  An unbiased H 2 survey for protostellar jets in Orion A ? II. The infrared survey data , 2002 .

[33]  H. Suto,et al.  [Fe II] 1.257 μm and He I 1.083 μm Emission in the Central Region of the Orion Nebula: H II Region, HH Flows, Jets, and Proplyds , 2002 .

[34]  Todd R. Hunter,et al.  Ground-based terahertz CO spectroscopy towards Orion , 2001 .

[35]  D. Lis,et al.  A Line Survey of Orion-KL from 607 to 725 GHz , 2001 .

[36]  C. Lee,et al.  A Spectral Line Survey from 138.3 to 150.7 GHz toward Orion-KL , 2000, astro-ph/0011362.

[37]  S. Basu,et al.  The Razor's Edge: Magnetic Fields and Their Fundamental Role in Star Formation and Observations of Protostellar Coress , 2000, astro-ph/0009281.

[38]  F. Adams,et al.  Dense Cores Mapped in Ammonia: A Database , 1999 .

[39]  J. Tedds,et al.  Shocked H2 and Fe+ dynamics in the Orion bullets , 1999, astro-ph/9903022.

[40]  T. Wilson Isotopes in the interstellar medium and circumstellar envelopes , 1999 .

[41]  J. Fiege,et al.  Helical fields and filamentary molecular clouds — I , 1999, astro-ph/9901096.

[42]  E. Serabyn,et al.  350 Micron Continuum Imaging of the Orion A Molecular Cloud with the Submillimeter High Angular Resolution Camera , 1998 .

[43]  A. Goodman,et al.  Coherence in Dense Cores. II. The Transition to Coherence , 1998 .

[44]  P. Ho,et al.  Large-Scale Structure, Kinematics, and Heating of the Orion Ridge. I. VLA NH3 (1, 1) and (2, 2) Multifield Mosaics , 1998 .

[45]  A. Kawamura,et al.  A C18O Survey of Dense Cloud Cores in Taurus: Star Formation , 1998 .

[46]  J. Bally,et al.  A Multiwavelength Study of Outflows in OMC-2/3 , 1998 .

[47]  G. Fuller,et al.  C18O and C17O Observations of Embedded Young Stars in the Taurus Molecular Cloud. I. Integrated Intensities and Column Densities , 1998 .

[48]  E. Bergin,et al.  Carbon Monoxide and Dust Column Densities: The Dust-to-Gas Ratio and Structure of Three Giant Molecular Cloud Cores , 1997 .

[49]  J. Bally,et al.  Dust Filaments and Star Formation in OMC-2 and OMC-3 , 1997 .

[50]  M. Wright,et al.  High-Resolution CO Observations of the Molecular Outflow in the Orion IRc2 Region , 1996 .

[51]  T. Henning,et al.  Dust opacities in dense regions , 1995 .

[52]  Jonathan P. Williams,et al.  The Density Structure in the Rosette Molecular Cloud: Signposts of Evolution , 1995 .

[53]  E. Serabyn,et al.  Fourier Transform Spectroscopy of the Orion Molecular Cloud Core , 1995 .

[54]  W. Danchi,et al.  The distribution of molecules in the core of OMC-1 , 1995 .

[55]  L. Ziurys,et al.  The spectrum of Orion-KL at 2 millimeters (150-160 GHz). , 1993, The Astrophysical journal. Supplement series.

[56]  M. Burton,et al.  Explosive ejection of matter associated with star formation in the Orion nebula , 1993, Nature.

[57]  G. White,et al.  Images of atomic carbon in the interstellar medium , 1991, Nature.

[58]  I. Gatley,et al.  A spectroscopic study of the Dr 21 outflow source. III - The CO line emission , 1991 .

[59]  J. M. Hollis,et al.  Millimeter- and Submillimeter-Wave Surveys of Orion A Emission Lines in the Ranges 200.7--202.3, 203.7--205.3, and 330--360 GHz , 1989 .

[60]  B. Turner A molecular line survey of Sagittarius B2 and Orion-KL from 70 to 115 GHz. I - The observational data , 1989 .

[61]  J. Stutzki,et al.  The Orion Molecular Cloud and Star-Forming Region , 1988 .

[62]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[63]  R. Lathe Phd by thesis , 1988, Nature.

[64]  Geoffrey A. Blake,et al.  Molecular abundances in OMC-1 - the chemical composition of interstellar molecular clouds and the influence of massive star formation , 1987 .

[65]  R. Wilson,et al.  Filamentary structure in the Orion molecular cloud , 1986 .

[66]  M. Morris,et al.  The large system of molecular clouds in Orion and Monoceros , 1986 .

[67]  Geoffrey A. Blake,et al.  Molecular line survey of Orion A from 215 to 247 GHz , 1985 .

[68]  R. Linke,et al.  Dense cores in dark clouds. I. CO observations and column densities of high-extinction regions , 1983 .

[69]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[70]  B. L. Ulich,et al.  Recommendations for calibration of millimeter-wavelength spectral line data. , 1981 .

[71]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[72]  G. Chin,et al.  The molecular complexes in Orion , 1977 .

[73]  N. Scoville,et al.  The nature of the broad molecular line emission at the Kleinmann-Low nebula. , 1976 .

[74]  D. Groggel Practical Nonparametric Statistics , 1972, Technometrics.

[75]  J. Ostriker On the Oscillations and the Stability of a Homogeneous Compressible Cylinder. , 1964 .

[76]  E. Bergin,et al.  A DIRECT MEASUREMENT OF THE TOTAL GAS COLUMN DENSITY IN ORION KL , 2011 .

[77]  D. Lis,et al.  Astrochemistry : recent successes and current challenges : proceedings of the 231st Symposium of the International Astronomical Union held in Pacific Grove, California, USA August 29 - September 2, 2005 , 2005 .

[78]  Thierry Montmerle,et al.  From darkness to light : origin and evolution of young stellar clusters : proceedings of a meeting held in Cargèse, Corsica, France, 3-8 April 2000 , 2001 .

[79]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[80]  J. Bally,et al.  JCMT/SCUBA Submillimeter Wavelength Imaging of the Integral-shaped Filament in Orion , 1998 .

[81]  T G Phillips,et al.  A Line Survey of Orion KL from 325 to 360 GHz , 1997, The Astrophysical journal. Supplement series.

[82]  E. Bergin,et al.  Density Structure in Giant Molecular Cloud Cores , 1996 .

[83]  P. Roelfsema,et al.  Astronomical Data Analysis Software and Systems I , 1992 .

[84]  C. Masson,et al.  THE ROTATIONAL EMISSION-LINE SPECTRUM OF ORION A BETWEEN 247 AND 263 GHZ , 1986 .