Uniformity of Point Samples in Metric Spaces Using Gap Ratio

Teramoto et al. [22] defined a new measure called the gap ratio that measures the uniformity of a finite point set sampled from \(\mathcal S\), a bounded subset of \(\mathbb {R}^2\). We attempt to generalize the definition of this measure over all metric spaces. We solve optimization related questions about selecting uniform point samples from metric spaces; the uniformity is measured using gap ratio. We give lower bounds for specific metric spaces, prove hardness and approximation hardness results. We also give a general approximation algorithm framework giving different approximation ratios for different metric spaces and give a \(\left( 1+\epsilon \right) \)-approximation algorithm for a set of points in a Euclidean space.

[1]  Jan Kratochvíl A Special Planar Satisfiability Problem and a Consequence of Its NP-completeness , 1994, Discret. Appl. Math..

[2]  Noga Alon,et al.  The space complexity of approximating the frequency moments , 1996, STOC '96.

[3]  Francis Y. L. Chin,et al.  Uniformly inserting points on square grid , 2011, Inf. Process. Lett..

[4]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[5]  Pankaj K. Agarwal,et al.  Approximating extent measures of points , 2004, JACM.

[6]  Patric R. J. Östergård,et al.  Asymptotic Behavior of Optimal Circle Packings in a Square , 1999, Canadian Mathematical Bulletin.

[7]  Timothy M. Chan Faster core-set constructions and data stream algorithms in fixed dimensions , 2004, SCG '04.

[8]  Benjamin Doerr,et al.  A lower bound for the discrepancy of a random point set , 2012, J. Complex..

[9]  W. Kuperberg,et al.  An inequality linking packing and covering densities of plane convex bodies , 1987 .

[10]  David Haussler,et al.  How to use expert advice , 1993, STOC.

[11]  Meng Sang Ong,et al.  Statistical measures of two dimensional point set uniformity , 2012, Comput. Stat. Data Anal..

[12]  Jirí Fiala,et al.  Systems of distant representatives , 2005, Discret. Appl. Math..

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Tetsuo Asano Online uniformity of integer points on a line , 2008, Inf. Process. Lett..

[15]  Dimitrios Gunopulos,et al.  Computing the rectangle discrepancy , 1994, SCG '94.

[16]  Richard C. T. Lee,et al.  The Weighted Perfect Domination Problem and Its Variants , 1996, Discret. Appl. Math..

[17]  J. Matousek,et al.  Geometric Discrepancy: An Illustrated Guide , 2009 .

[18]  Tetsuo Asano,et al.  Matrix rounding under the Lp-discrepancy measure and its application to digital halftoning , 2002, SODA '02.

[19]  Vicente J. Romero,et al.  Comparison of pure and "Latinized" centroidal Voronoi tessellation against various other statistical sampling methods , 2006, Reliab. Eng. Syst. Saf..

[20]  Patric R. J. Östergård,et al.  Packing up to 50 Equal Circles in a Square , 1997, Discret. Comput. Geom..

[21]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[22]  S. Muthukrishnan,et al.  Data streams: algorithms and applications , 2005, SODA '03.

[23]  Rajeev Motwani,et al.  Incremental clustering and dynamic information retrieval , 1997, STOC '97.

[24]  Edgar A. Ramos An Optimal Deterministic Algorithm for Computing the Diameter of a Three-Dimensional Point Set , 2001, Discret. Comput. Geom..

[25]  Tetsuo Asano,et al.  Combinatorial and Geometric Problems Related to Digital Halftoning , 2002, Theoretical Foundations of Computer Vision.

[26]  Armen Vagharshakyan Lower Bounds for $L_1$ Discrepancy , 2012 .

[27]  Tetsuo Asano,et al.  Inserting Points Uniformly at Every Instance , 2006, IEICE Trans. Inf. Syst..

[28]  Peter J. Slater,et al.  Generalized domination and efficient domination in graphs , 1996, Discret. Math..

[29]  Marco Locatelli,et al.  Packing equal circles in a square: a deterministic global optimization approach , 2002, Discret. Appl. Math..

[30]  Kenneth Stephenson,et al.  A circle packing algorithm , 2003, Comput. Geom..

[31]  Patric R. J. Östergård,et al.  More Optimal Packings of Equal Circles in a Square , 1999, Discret. Comput. Geom..

[32]  Takeshi Tokuyama,et al.  Discrepancy-Based Digital Halftoning: Automatic Evaluation and Optimization , 2002, Theoretical Foundations of Computer Vision.

[33]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[34]  Sariel Har-Peled,et al.  On coresets for k-means and k-median clustering , 2004, STOC '04.

[35]  Tetsuo Asano Computational Geometric and Combinatorial Approaches to Digital Halftoning , 2006, CATS.

[36]  Arijit Bishnu,et al.  Uniformity of Point Samples in Metric Spaces Using Gap Ratio , 2017, SIAM J. Discret. Math..

[37]  Bernard Chazelle,et al.  The discrepancy method - randomness and complexity , 2000 .

[38]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[39]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[40]  L. Tóth,et al.  New Results in the Theory of Packing and Covering , 1983 .