Observation of room-temperature polar skyrmions
暂无分享,去创建一个
R. Ramesh | P. Shafer | J. F. Liu | P. García-Fernández | Lane W. Martin | J. Junquera | C. T. Nelson | D. G. Schlom | B. Prasad | D. Muller | J. Junquera | Long-Qing Chen | L. Martin | J. Íñiguez | R. Ramesh | D. Schlom | Y. Tang | L. Chen | M. McCarter | S. Saremi | L. Martin | C. Ophus | C. Klewe | E. Arenholz | V. Stoica | C. Nelson | J. Liu | S. Hsu | B. Prasad | Sujit Das | P. Shafer | A. B. Mei | Yunlong Tang | D. A. Muller | S. Das | L. Q. Chen | Y. L. Tang | K. Nguyen | P. García-Fernández | J. Íñiguez | Z. Hong | L. W. Martin | E. Arenholz | S.-L. Hsu | S. Das | Z. Hong | M. A. P. Gonçalves | M. R. McCarter | C. Klewe | K. X. Nguyen | F. Gómez-Ortiz | V. A. Stoica | B. Wang | C. Ophus | S. Saremi | R. Ramesh | D. A. Muller | F. Gómez-Ortiz | B. Wang | J. F. Liu | D. Schlom | Bo Wang
[1] C. Pfleiderer,et al. Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.
[2] J. Gregg. Exotic Domain States in Ferroelectrics: Searching for Vortices and Skyrmions , 2012 .
[3] S. Yasui,et al. Vortices and Other Topological Solitons in Dense Quark Matter , 2013, 1308.1535.
[4] J. Íñiguez,et al. Ferroelectricity at ferroelectric domain walls , 2013, 1312.5181.
[5] V. Gopalan,et al. A modified Landau-Devonshire thermodynamic potential for strontium titanate , 2010 .
[6] Javier Junquera,et al. Second-principles method for materials simulations including electron and lattice degrees of freedom , 2015, 1511.07675.
[7] Bo-Kuai Lai,et al. Electric-field-induced domain evolution in ferroelectric ultrathin films. , 2006, Physical review letters.
[8] D. Hall,et al. Synthetic electromagnetic knot in a three-dimensional skyrmion , 2018, Science Advances.
[9] J. Zang,et al. Skyrmions in magnetic multilayers , 2017, 1706.08295.
[10] Christopher T. Nelson,et al. Emergent chirality in the electric polarization texture of titanate superlattices , 2018, Proceedings of the National Academy of Sciences.
[11] Daniel C. Ralph,et al. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy , 2016, Microscopy and Microanalysis.
[12] R. Moessner,et al. Pseudospin Vortex Ring with a Nodal Line in Three Dimensions. , 2016, Physical review letters.
[13] Jie Shen,et al. Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .
[14] E. Kirkland. Computation in electron microscopy. , 2016, Acta crystallographica. Section A, Foundations and advances.
[15] A. Fert,et al. Skyrmions on the track. , 2013, Nature nanotechnology.
[16] J Ruostekoski,et al. Creating vortex rings and three-dimensional skyrmions in Bose-Eeinstein condensates. , 2001, Physical review letters.
[17] R. Hertel,et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy , 2017, Nature Communications.
[18] Goedkoop,et al. Chiral magnetic domain structures in ultrathin FePd films , 1999, Science.
[19] E. Artacho,et al. Topology of the polarization field in ferroelectric nanowires from first principles , 2009, 0908.3617.
[20] F. Reif,et al. QUANTIZED VORTEX RINGS IN SUPERFLUID HELIUM , 1964 .
[21] Shenyang Y. Hu,et al. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films , 2002 .
[22] J. White,et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. , 2015, Nature materials.
[23] G. Laan,et al. Resonant x-ray diffraction from chiral electric-polarization structures , 2018, Physical Review B.
[24] L. Bellaiche,et al. Discovery of stable skyrmionic state in ferroelectric nanocomposites , 2015, Nature Communications.
[25] S. Parkin,et al. Magnetic Domain-Wall Racetrack Memory , 2008, Science.
[26] Philippe Ghosez,et al. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.
[27] L. Martin,et al. Stability of Polar Vortex Lattice in Ferroelectric Superlattices. , 2017, Nano letters.
[28] Leslie E. Cross,et al. Thermodynamic theory of PbTiO3 , 1987 .
[29] Jorge Íñiguez,et al. Ferroelectric transitions at ferroelectric domain walls found from first principles. , 2014, Physical review letters.
[30] B. Berg,et al. Definition and statistical distributions of a topological number in the lattice O(3) σ-model , 1981 .
[31] Christopher T. Nelson,et al. Spatially resolved steady-state negative capacitance , 2019, Nature.
[32] Y. Tokura,et al. Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.
[33] A. Minor,et al. Observation of polar vortices in oxide superlattices , 2016, Nature.
[34] M. Raschke,et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. , 2017, Nature materials.
[35] G. Finocchio,et al. A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.
[36] P. Fischer,et al. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy , 2017, Nature Communications.
[37] Long-Qing Chen,et al. Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review , 2008 .
[38] N. D. Mermin,et al. The topological theory of defects in ordered media , 1979 .
[39] Shenyang Y. Hu,et al. Effect of electrical boundary conditions on ferroelectric domain structures in thin films , 2002 .
[40] Qi Zhang,et al. Nanoscale Bubble Domains and Topological Transitions in Ultrathin Ferroelectric Films , 2017, Advanced materials.
[41] I. Kornev,et al. Axial hypertoroidal moment in a ferroelectric nanotorus: A way to switch local polarization , 2014 .
[42] P. Böni,et al. Skyrmion Lattice in a Chiral Magnet , 2009, Science.
[43] K. Metlov,et al. What makes magnetic skyrmions different from magnetic bubbles? , 2017, Journal of Magnetism and Magnetic Materials.
[44] O. Auciello,et al. Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.
[45] A. N. Bogdanov,et al. Three-dimensional skyrmion states in thin films of cubic helimagnets , 2012, 1212.5970.
[46] Yi Zhang,et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. , 2011, Nano letters.
[47] Donghwa Lee,et al. Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls , 2009 .