Observation of room-temperature polar skyrmions

Complex topological configurations are fertile ground for exploring emergent phenomena and exotic phases in condensed-matter physics. For example, the recent discovery of polarization vortices and their associated complex-phase coexistence and response under applied electric fields in superlattices of (PbTiO3)n/(SrTiO3)n suggests the presence of a complex, multi-dimensional system capable of interesting physical responses, such as chirality, negative capacitance and large piezo-electric responses1–3. Here, by varying epitaxial constraints, we discover room-temperature polar-skyrmion bubbles in a lead titanate layer confined by strontium titanate layers, which are imaged by atomic-resolution scanning transmission electron microscopy. Phase-field modelling and second-principles calculations reveal that the polar-skyrmion bubbles have a skyrmion number of +1, and resonant soft-X-ray diffraction experiments show circular dichroism, confirming chirality. Such nanometre-scale polar-skyrmion bubbles are the electric analogues of magnetic skyrmions, and could contribute to the advancement of ferroelectrics towards functionalities incorporating emergent chirality and electrically controllable negative capacitance.Chiral polar-skyrmion bubbles are observed in superlattices of titanium-based perovskite oxides at room temperature.

[1]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[2]  J. Gregg Exotic Domain States in Ferroelectrics: Searching for Vortices and Skyrmions , 2012 .

[3]  S. Yasui,et al.  Vortices and Other Topological Solitons in Dense Quark Matter , 2013, 1308.1535.

[4]  J. Íñiguez,et al.  Ferroelectricity at ferroelectric domain walls , 2013, 1312.5181.

[5]  V. Gopalan,et al.  A modified Landau-Devonshire thermodynamic potential for strontium titanate , 2010 .

[6]  Javier Junquera,et al.  Second-principles method for materials simulations including electron and lattice degrees of freedom , 2015, 1511.07675.

[7]  Bo-Kuai Lai,et al.  Electric-field-induced domain evolution in ferroelectric ultrathin films. , 2006, Physical review letters.

[8]  D. Hall,et al.  Synthetic electromagnetic knot in a three-dimensional skyrmion , 2018, Science Advances.

[9]  J. Zang,et al.  Skyrmions in magnetic multilayers , 2017, 1706.08295.

[10]  Christopher T. Nelson,et al.  Emergent chirality in the electric polarization texture of titanate superlattices , 2018, Proceedings of the National Academy of Sciences.

[11]  Daniel C. Ralph,et al.  High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy , 2016, Microscopy and Microanalysis.

[12]  R. Moessner,et al.  Pseudospin Vortex Ring with a Nodal Line in Three Dimensions. , 2016, Physical review letters.

[13]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[14]  E. Kirkland Computation in electron microscopy. , 2016, Acta crystallographica. Section A, Foundations and advances.

[15]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[16]  J Ruostekoski,et al.  Creating vortex rings and three-dimensional skyrmions in Bose-Eeinstein condensates. , 2001, Physical review letters.

[17]  R. Hertel,et al.  Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy , 2017, Nature Communications.

[18]  Goedkoop,et al.  Chiral magnetic domain structures in ultrathin FePd films , 1999, Science.

[19]  E. Artacho,et al.  Topology of the polarization field in ferroelectric nanowires from first principles , 2009, 0908.3617.

[20]  F. Reif,et al.  QUANTIZED VORTEX RINGS IN SUPERFLUID HELIUM , 1964 .

[21]  Shenyang Y. Hu,et al.  Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films , 2002 .

[22]  J. White,et al.  Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. , 2015, Nature materials.

[23]  G. Laan,et al.  Resonant x-ray diffraction from chiral electric-polarization structures , 2018, Physical Review B.

[24]  L. Bellaiche,et al.  Discovery of stable skyrmionic state in ferroelectric nanocomposites , 2015, Nature Communications.

[25]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[26]  Philippe Ghosez,et al.  First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  L. Martin,et al.  Stability of Polar Vortex Lattice in Ferroelectric Superlattices. , 2017, Nano letters.

[28]  Leslie E. Cross,et al.  Thermodynamic theory of PbTiO3 , 1987 .

[29]  Jorge Íñiguez,et al.  Ferroelectric transitions at ferroelectric domain walls found from first principles. , 2014, Physical review letters.

[30]  B. Berg,et al.  Definition and statistical distributions of a topological number in the lattice O(3) σ-model , 1981 .

[31]  Christopher T. Nelson,et al.  Spatially resolved steady-state negative capacitance , 2019, Nature.

[32]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[33]  A. Minor,et al.  Observation of polar vortices in oxide superlattices , 2016, Nature.

[34]  M. Raschke,et al.  Phase coexistence and electric-field control of toroidal order in oxide superlattices. , 2017, Nature materials.

[35]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[36]  P. Fischer,et al.  Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy , 2017, Nature Communications.

[37]  Long-Qing Chen,et al.  Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review , 2008 .

[38]  N. D. Mermin,et al.  The topological theory of defects in ordered media , 1979 .

[39]  Shenyang Y. Hu,et al.  Effect of electrical boundary conditions on ferroelectric domain structures in thin films , 2002 .

[40]  Qi Zhang,et al.  Nanoscale Bubble Domains and Topological Transitions in Ultrathin Ferroelectric Films , 2017, Advanced materials.

[41]  I. Kornev,et al.  Axial hypertoroidal moment in a ferroelectric nanotorus: A way to switch local polarization , 2014 .

[42]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[43]  K. Metlov,et al.  What makes magnetic skyrmions different from magnetic bubbles? , 2017, Journal of Magnetism and Magnetic Materials.

[44]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[45]  A. N. Bogdanov,et al.  Three-dimensional skyrmion states in thin films of cubic helimagnets , 2012, 1212.5970.

[46]  Yi Zhang,et al.  Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. , 2011, Nano letters.

[47]  Donghwa Lee,et al.  Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls , 2009 .