Parallel anisotropic mesh adaptivity with dynamic load balancing for cardiac electrophysiology

Abstract Simulations in cardiac electrophysiology generally use very fine meshes and small time steps to resolve highly localized wavefronts. This expense motivates the use of mesh adaptivity, which has been demonstrated to reduce the overall computational load. However, even with mesh adaptivity performing such simulations on a single processor is infeasible. Therefore, the adaptivity algorithm must be parallelised. Rather than modifying the sequential adaptive algorithm, the parallel mesh adaptivity method introduced in this paper focuses on dynamic load balancing in response to the local refinement and coarsening of the mesh. In essence, the mesh partition boundary is perturbed away from mesh regions of high relative error, while also balancing the computational load across processes. The parallel scaling of the method when applied to physiologically realistic heart meshes is shown to be good as long as there are enough mesh nodes to distribute over the available parallel processes. It is shown that the new method is dominated by the cost of the sequential adaptive mesh procedure and that the parallel overhead of inter-process data migration represents only a small fraction of the overall cost.

[1]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[2]  Maria Elizabeth G. Ong,et al.  Uniform Refinement of a Tetrahedron , 1994, SIAM J. Sci. Comput..

[3]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[4]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[5]  Randolph E. Bank,et al.  The use of adaptive grid refinement for badly behaved elliptic partial differential equations , 1980 .

[6]  Jonathan P. Whiteley,et al.  Physiology Driven Adaptivity for the Numerical Solution of the Bidomain Equations , 2007, Annals of Biomedical Engineering.

[7]  P. Deuflhard,et al.  Adaptive finite element simulation of ventricular fibrillation dynamics , 2009 .

[8]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[9]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[10]  Leonid Oliker,et al.  Parallel tetrahedral mesh adaptation with dynamic load balancing , 2013, Parallel Comput..

[11]  Mark T. Jones,et al.  The Scalability of Mesh Improvement Algorithms , 1999 .

[12]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[13]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[14]  C. C. Pain,et al.  h, r, and hr adaptivity with applications in numerical ocean modelling , 2005 .

[15]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[16]  Rainald Löhner,et al.  Adaptive h‐refinement on 3D unstructured grids for transient problems , 1992 .

[17]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[18]  Alexander G. Fletcher,et al.  Chaste: A test-driven approach to software development for biological modelling , 2009, Comput. Phys. Commun..

[19]  J. Trangenstein,et al.  Operator splitting and adaptive mesh refinement for the Luo-Rudy I model , 2004 .

[20]  Youssef Belhamadia,et al.  Towards accurate numerical method for monodomain models using a realistic heart geometry. , 2009, Mathematical biosciences.

[21]  Paul-Louis George,et al.  Optimization of Tetrahedral Meshes , 1995 .

[22]  S. Canann,et al.  Optismoothing: an optimization-driven approach to mesh smoothing , 1993 .

[23]  Martin Berzins,et al.  A 3D UNSTRUCTURED MESH ADAPTATION ALGORITHM FOR TIME-DEPENDENT SHOCK-DOMINATED PROBLEMS , 1997 .

[24]  James P. Keener,et al.  Mathematical physiology , 1998 .

[25]  Mark T. Jones,et al.  A Parallel Algorithm for Mesh Smoothing , 1999, SIAM J. Sci. Comput..

[26]  Peter MacNeice,et al.  Paramesh: A Parallel Adaptive Mesh Refinement Community Toolkit , 2013 .

[27]  Gustavo C. Buscaglia,et al.  Anisotropic mesh optimization and its application in adaptivity , 1997 .

[28]  Herbert Edelsbrunner,et al.  Incremental topological flipping works for regular triangulations , 1992, SCG '92.

[29]  David Gavaghan,et al.  Generation of histo-anatomically representative models of the individual heart: tools and application , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .

[31]  Jens Lang,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology , 2022 .

[32]  Martin Berzins,et al.  Parallel unstructured tetrahedral mesh adaptation: Algorithms, implementation and scalability , 1999 .

[33]  C S Henriquez,et al.  A space-time adaptive method for simulating complex cardiac dynamics. , 2000, Physical review letters.

[34]  Vipin Kumar,et al.  Multilevel Diffusion Schemes for Repartitioning of Adaptive Meshes , 1997, J. Parallel Distributed Comput..

[35]  Can Ozturan Distributed environment and load balancing for adaptive unstructured meshes , 1996 .

[36]  Peter K. Jimack,et al.  Techniques for Parallel Adaptivity , 2000 .

[37]  C. Luo,et al.  A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. , 1991, Circulation research.

[38]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[39]  Vipin Kumar,et al.  A Unified Algorithm for Load-balancing Adaptive Scientific Simulations , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[40]  Barry Joe,et al.  Construction of Three-Dimensional Improved-Quality Triangulations Using Local Transformations , 1995, SIAM J. Sci. Comput..

[41]  Christopher C. Pain,et al.  Adjoint A Posteriori Error Measures for Anisotropic Mesh Optimisation , 2006, Comput. Math. Appl..

[42]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[43]  Mark T. Jones,et al.  Parallel Algorithms for Adaptive Mesh Refinement , 1997, SIAM J. Sci. Comput..

[44]  C. C. Pain,et al.  Adjoint goal-based error norms for adaptive mesh ocean modelling , 2006 .

[45]  P. Hunter,et al.  Integration from proteins to organs: the Physiome Project , 2003, Nature Reviews Molecular Cell Biology.

[46]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[47]  Randolph E. Bank,et al.  An adaptive, multi-level method for elliptic boundary value problems , 2005, Computing.

[48]  Martin G. Everett,et al.  Parallel Dynamic Graph Partitioning for Adaptive Unstructured Meshes , 1997, J. Parallel Distributed Comput..

[49]  Miguel O. Bernabeu,et al.  Simulating cardiac electrophysiology using anisotropic mesh adaptivity , 2010, J. Comput. Sci..

[50]  Vipin Kumar,et al.  Wavefront Diffusion and LMSR: Algorithms for Dynamic Repartitioning of Adaptive Meshes , 2001, IEEE Trans. Parallel Distributed Syst..

[51]  Youssef Belhamadia,et al.  A Time-Dependent Adaptive Remeshing for Electrical Waves of the Heart , 2008, IEEE Transactions on Biomedical Engineering.

[52]  David Eppstein,et al.  Optimal point placement for mesh smoothing , 1997, SODA '97.

[53]  Elizabeth M Cherry,et al.  Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. , 2003, Chaos.

[54]  V. Parthasarathy,et al.  A constrained optimization approach to finite element mesh smoothing , 1991 .