NAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs

Background MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP). Results mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs. Conclusions Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level.

[1]  Daniel J. Blankenberg,et al.  Using Galaxy to Perform Large‐Scale Interactive Data Analyses , 2012, Current protocols in bioinformatics.

[2]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[3]  C. Sander,et al.  Target mRNA abundance dilutes microRNA and siRNA activity , 2010, Molecular systems biology.

[4]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[5]  Fabian J Theis,et al.  PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes , 2010, Genome Biology.

[6]  Igor Jurisica,et al.  NAViGaTOR: Network Analysis, Visualization and Graphing Toronto , 2009, Bioinform..

[7]  Nectarios Koziris,et al.  Accurate microRNA target prediction correlates with protein repression levels , 2009, BMC Bioinformatics.

[8]  Pixu Liu,et al.  Targeting the phosphoinositide 3-kinase pathway in cancer , 2009, Nature Reviews Drug Discovery.

[9]  Nectarios Koziris,et al.  DIANA-microT web server: elucidating microRNA functions through target prediction , 2009, Nucleic Acids Res..

[10]  John S Mattick,et al.  Regulation of Epidermal Growth Factor Receptor Signaling in Human Cancer Cells by MicroRNA-7* , 2009, Journal of Biological Chemistry.

[11]  Manuel A. S. Santos,et al.  MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells , 2009, Proceedings of the National Academy of Sciences.

[12]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[13]  Andrew M. Jenkinson,et al.  Ensembl 2009 , 2008, Nucleic Acids Res..

[14]  Lincoln Stein,et al.  Reactome knowledgebase of human biological pathways and processes , 2008, Nucleic Acids Res..

[15]  Martin Reczko,et al.  The database of experimentally supported targets: a functional update of TarBase , 2008, Nucleic Acids Res..

[16]  A. Ballabio,et al.  MicroRNA target prediction by expression analysis of host genes. , 2009, Genome research.

[17]  Joshua J. Forman,et al.  A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence , 2008, Proceedings of the National Academy of Sciences.

[18]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[19]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[20]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[21]  Reuven Agami,et al.  miR-148 targets human DNMT3b protein coding region. , 2008, RNA.

[22]  Lin Zhang,et al.  The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis , 2008, Nature Cell Biology.

[23]  W. Gerald,et al.  Endogenous human microRNAs that suppress breast cancer metastasis , 2008, Nature.

[24]  Doron Betel,et al.  The microRNA.org resource: targets and expression , 2007, Nucleic Acids Res..

[25]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[26]  Sanghyuk Lee,et al.  miRGator: an integrated system for functional annotation of microRNAs , 2007, Nucleic Acids Res..

[27]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[28]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[29]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[30]  Daniel J. Blankenberg,et al.  A framework for collaborative analysis of ENCODE data: making large-scale analyses biologist-friendly. , 2007, Genome research.

[31]  Ola Snøve,et al.  Distance constraints between microRNA target sites dictate efficacy and cooperativity , 2007, Nucleic acids research.

[32]  L. Lim,et al.  Transcripts Targeted by the MicroRNA-16 Family Cooperatively Regulate Cell Cycle Progression , 2007, Molecular and Cellular Biology.

[33]  David Haussler,et al.  The UCSC genome browser database: update 2007 , 2006, Nucleic Acids Res..

[34]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[35]  I. Jurisica,et al.  Unequal evolutionary conservation of human protein interactions in interologous networks , 2007, Genome Biology.

[36]  Gopal R. Gopinath,et al.  Reactome: a knowledge base of biologic pathways and processes , 2007, Genome Biology.

[37]  N. Rajewsky,et al.  Natural selection on human microRNA binding sites inferred from SNP data , 2006, Nature Genetics.

[38]  P. Hawkins,et al.  Signalling through Class I PI3Ks in mammalian cells. , 2006, Biochemical Society transactions.

[39]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[40]  Ji Luo,et al.  The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism , 2006, Nature Reviews Genetics.

[41]  Xiaowei Wang,et al.  Systematic identification of microRNA functions by combining target prediction and expression profiling , 2006, Nucleic acids research.

[42]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[43]  Tak W. Mak,et al.  Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis , 2006, Nature Reviews Cancer.

[44]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[45]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[46]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[47]  Igor Jurisica,et al.  Online Predicted Human Interaction Database , 2005, Bioinform..

[48]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[49]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[50]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[51]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[52]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[53]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[54]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[55]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[56]  V. Ambros,et al.  A short history of a short RNA , 2004, Cell.

[57]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[58]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[59]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[60]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[61]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[62]  B. Cullen,et al.  MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Chiara Gamberi,et al.  The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. , 2003, Developmental cell.

[64]  A. Rougvie,et al.  The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. , 2003, Developmental cell.

[65]  Phillip A Sharp,et al.  siRNAs can function as miRNAs , 2003 .

[66]  E Birney,et al.  The Genome Knowledgebase: a resource for biologists and bioinformaticists. , 2003, Cold Spring Harbor symposia on quantitative biology.

[67]  B. Reinhart,et al.  A biochemical framework for RNA silencing in plants. , 2003, Genes & development.

[68]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[69]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[70]  Eric J Wagner,et al.  Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. , 2002, Molecular cell.

[71]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[72]  M. Batzer,et al.  Alu repeats and human genomic diversity , 2002, Nature Reviews Genetics.

[73]  E. Moss,et al.  Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. , 2002, Developmental biology.

[74]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[75]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[76]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[77]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[78]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[79]  D. Valle,et al.  Online Mendelian Inheritance In Man (OMIM) , 2000, Human mutation.

[80]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[81]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[82]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[83]  Chris Sander,et al.  The HSSP database of protein structure-sequence alignments , 1993, Nucleic Acids Res..

[84]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[85]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[86]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[87]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[88]  V. Ambros A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans , 1989, Cell.

[89]  M. Waterman,et al.  A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons. , 1987, Journal of molecular biology.

[90]  Martin Chalfie,et al.  Mutations that lead to reiterations in the cell lineages of C. elegans , 1981, Cell.

[91]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[92]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[93]  J. Sulston,et al.  Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. , 1980, Genetics.

[94]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.