Identifying the body force from partial observations of a 2D incompressible velocity field

Using limited observations of the velocity field of the two-dimensional Navier-Stokes equations, we successfully reconstruct the steady body force that drives the flow. The number of observed data points is less than 10\% of the number of modes that describes the full flow field, indicating that the method introduced here is capable of identifying complicated forcing mechanisms from very simple observations. In addition to demonstrating the efficacy of this method on turbulent flow data generated by simulations of the two-dimensional Navier-Stokes equations, we also rigorously justify convergence of the derived algorithm. Beyond the practical applicability of such an algorithm, the reliance of this method on the dynamical evolution of the system yields physical insight into the turbulent cascade.

[1]  V. Martinez On the reconstruction of unknown driving forces from low-mode observations in the 2D Navier-Stokes Equations , 2022, ArXiv.

[2]  Eric Olson,et al.  Data Assimilation using Time-Delay Nudging in the Presence of Gaussian Noise , 2022, 2201.12244.

[3]  V. Martinez Convergence analysis of a viscosity parameter recovery algorithm for the 2D Navier–Stokes equations , 2021, Nonlinearity.

[4]  Adam Larios,et al.  The Bleeps, the Sweeps, and the Creeps: Convergence Rates for Dynamic Observer Patterns via Data Assimilation for the 2D Navier-Stokes Equations , 2021, Computer Methods in Applied Mechanics and Engineering.

[5]  A. Chattopadhyay,et al.  Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case. , 2021, Chaos.

[6]  Joshua Hudson,et al.  Dynamically learning the parameters of a chaotic system using partial observations , 2021, Discrete & Continuous Dynamical Systems.

[7]  Michael S. Jolly,et al.  Data assimilation with higher order finite element interpolants , 2021, International Journal for Numerical Methods in Fluids.

[8]  Ufuk Topcu,et al.  Learning to Reach, Swim, Walk and Fly in One Trial: Data-Driven Control with Scarce Data and Side Information , 2021, L4DC.

[9]  Shane A. McQuarrie,et al.  Concurrent multi-parameter learning demonstrated on the Kuramoto-Sivashinsky equation , 2021, SIAM J. Sci. Comput..

[10]  Colm‐cille P. Caulfield,et al.  Turbulence in forced stratified shear flows , 2020, Journal of Fluid Mechanics.

[11]  Cecilia F. Mondaini,et al.  Fully discrete numerical schemes of a data assimilation algorithm: uniform-in-time error estimates , 2019, IMA Journal of Numerical Analysis.

[12]  K. Carlson,et al.  Turbulent Flows , 2020, Finite Analytic Method in Flows and Heat Transfer.

[13]  Adam Larios,et al.  Parameter Recovery for the 2 Dimensional Navier-Stokes Equations via Continuous Data Assimilation , 2020, SIAM J. Sci. Comput..

[14]  P. Yeung,et al.  Advancing understanding of turbulence through extreme-scale computation: Intermittency and simulations at large problem sizes , 2019 .

[15]  O. Knio,et al.  Efficient dynamical downscaling of general circulation models using continuous data assimilation , 2019, Quarterly Journal of the Royal Meteorological Society.

[16]  L. Biferale,et al.  Synchronization to Big Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent Flows , 2019, Physical Review X.

[17]  E. Titi,et al.  A Data Assimilation Algorithm: the Paradigm of the 3D Leray-α Model of Turbulence , 2019, Partial Differential Equations Arising from Physics and Geometry.

[18]  A. Farhat,et al.  Data Assimilation in Large Prandtl Rayleigh-Bénard Convection from Thermal Measurements , 2019, SIAM J. Appl. Dyn. Syst..

[19]  Kathrin Padberg-Gehle,et al.  Probing turbulent superstructures in Rayleigh-Bénard convection by Lagrangian trajectory clusters , 2018, Physical Review Fluids.

[20]  Emine Celik,et al.  Spectral Filtering of Interpolant Observables for a Discrete-in-Time Downscaling Data Assimilation Algorithm , 2018, SIAM J. Appl. Dyn. Syst..

[21]  M. Jolly,et al.  Continuous Data Assimilation with Blurred-in-Time Measurements of the Surface Quasi-Geostrophic Equation , 2018, Chinese Annals of Mathematics, Series B.

[22]  A. Carrassi,et al.  A Review of Innovation-Based Methods to Jointly Estimate Model and Observation Error Covariance Matrices in Ensemble Data Assimilation , 2018, Monthly Weather Review.

[23]  A. Mazzino,et al.  Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging , 2018, Physical Review Fluids.

[24]  D. Lohse,et al.  Turbulent thermal superstructures in Rayleigh-Bénard convection , 2018, 1804.02310.

[25]  Edriss S. Titi,et al.  Uniform-in-Time Error Estimates for the Postprocessing Galerkin Method Applied to a Data Assimilation Algorithm , 2018, SIAM J. Numer. Anal..

[26]  Eric Olson,et al.  Data assimilation using noisy time-averaged measurements , 2017, Physica D: Nonlinear Phenomena.

[27]  Cecilia F. Mondaini,et al.  Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations , 2017, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[28]  Daniel Margoliash,et al.  A unifying view of synchronization for data assimilation in complex nonlinear networks. , 2017, Chaos.

[29]  Edriss S. Titi,et al.  Assimilation of Nearly Turbulent Rayleigh–Bénard Flow Through Vorticity or Local Circulation Measurements: A Computational Study , 2017, Journal of Scientific Computing.

[30]  Animikh Biswas,et al.  Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations , 2017 .

[31]  Yuan Pei,et al.  Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields , 2017, Asymptot. Anal..

[32]  E. Titi,et al.  Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone , 2017, Journal of Nonlinear Science.

[33]  Edriss S. Titi,et al.  A Discrete Data Assimilation Scheme for the Solutions of the Two-Dimensional Navier-Stokes Equations and Their Statistics , 2016, SIAM J. Appl. Dyn. Syst..

[34]  E. Titi,et al.  On the Charney Conjecture of Data Assimilation Employing Temperature Measurements Alone: The Paradigm of 3D Planetary Geostrophic Model , 2016, 1608.04770.

[35]  Edriss S. Titi,et al.  A Data Assimilation Algorithm for the Subcritical Surface Quasi-Geostrophic Equation , 2016, 1607.08574.

[36]  David S.-K. Ting,et al.  Basics of Engineering Turbulence , 2016 .

[37]  Edriss S. Titi,et al.  A discrete data assimilation scheme for the solutions of the 2D Navier-Stokes equations and their statistics , 2016, 1602.05995.

[38]  Edriss S. Titi,et al.  Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone , 2016, J. Nonlinear Sci..

[39]  M. U. Altaf,et al.  Downscaling the 2D Bénard convection equations using continuous data assimilation , 2015, Computational Geosciences.

[40]  Edriss S. Titi,et al.  Determining form and data assimilation algorithm for weakly damped and driven Korteweg-de Vries equaton- Fourier modes case , 2015, 1510.02730.

[41]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[42]  Edriss S. Titi,et al.  Data Assimilation algorithm for 3D B\'enard convection in porous media employing only temperature measurements , 2015, 1506.08678.

[43]  Edriss S. Titi,et al.  A Computational Study of a Data Assimilation Algorithm for the Two-dimensional Navier-Stokes Equations , 2015, 1505.01234.

[44]  Edriss S. Titi,et al.  Abridged Continuous Data Assimilation for the 2D Navier–Stokes Equations Utilizing Measurements of Only One Component of the Velocity Field , 2015, 1504.05978.

[45]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model , 2015, 1502.00964.

[46]  Edriss S. Titi,et al.  Continuous data assimilation for the 2D Bénard convection through velocity measurements alone , 2014, 1410.1767.

[47]  Jörg Schumacher,et al.  Small-scale universality in fluid turbulence , 2014, Proceedings of the National Academy of Sciences.

[48]  M. Jolly,et al.  A determining form for the damped driven nonlinear Schrödinger equation—Fourier modes case , 2014, 1406.2626.

[49]  Hakima Bessaih,et al.  Continuous data assimilation with stochastically noisy data , 2014, 1406.1533.

[50]  Edriss S. Titi,et al.  Continuous Data Assimilation Using General Interpolant Observables , 2013, J. Nonlinear Sci..

[51]  A. M. Stuart,et al.  Accuracy and stability of the continuous-time 3DVAR filter for the Navier–Stokes equation , 2012, 1210.1594.

[52]  D. S. McCormick,et al.  Accuracy and stability of filters for dissipative PDEs , 2012, 1203.5845.

[53]  Ivan G. Szendro,et al.  On the problem of data assimilation by means of synchronization , 2009 .

[54]  C. Foias,et al.  On the asymptotic behavior of average energy and enstrophy in 3D turbulent flows , 2009 .

[55]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[56]  Seung-Jong Baek,et al.  Synchronization in chaotic systems: Coupling of chaotic maps, data assimilation and weather forecasting , 2007 .

[57]  Hong Li,et al.  Data Assimilation as Synchronization of Truth and Model: Experiments with the Three-Variable Lorenz System* , 2006 .

[58]  M. Jolly,et al.  Relations Between Energy and Enstrophy on the Global Attractor of the 2-D Navier-Stokes Equations , 2005 .

[59]  Edriss S. Titi,et al.  Determining Modes for Continuous Data Assimilation in 2D Turbulence , 2003 .

[60]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[61]  C. Gibson Turbulence in the Ocean, Atmosphere, Galaxy, and Universe , 1996, astro-ph/9904260.

[62]  Bernardo Cockburn,et al.  Determining degrees of freedom for nonlinear dissipative equations , 1995 .

[63]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[64]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[65]  Donald A. Jones,et al.  Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .

[66]  Dean A. Jones,et al.  On the number of determining nodes for the 2D Navier-Stokes equations , 1992 .

[67]  Stephen B. Pope,et al.  An examination of forcing in direct numerical simulations of turbulence , 1988 .

[68]  C. Basdevant Technical improvements for direct numerical simulation of homogeneous three-dimensional turbulence , 1983 .

[69]  R. Temam,et al.  Number of Modes Governing Two-Dimensional Viscous, Incompressible Flows , 1983 .

[70]  Stanislav Boldyrev,et al.  Two-dimensional turbulence , 1980 .

[71]  J. Hoke,et al.  The Initialization of Numerical Models by a Dynamic-Initialization Technique , 1976 .

[72]  V. M. Toi,et al.  UPPER BOUNDS ON THE NUMBER OF DETERMINING MODES, NODES, AND VOLUME ELEMENTS FOR A 3D MAGENETOHYDRODYNAMIC-α MODEL , 2020 .

[73]  Débora A. F. Albanez,et al.  Continuous data assimilation algorithm for simplified Bardina model , 2018 .

[74]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Navier-Stokes-α model , 2016, Asymptot. Anal..

[75]  Yvonne Jaeger,et al.  Turbulence: An Introduction for Scientists and Engineers , 2015 .

[76]  Hantaek Bae Navier-Stokes equations , 1992 .

[77]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[78]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[79]  Bernd Schmidt,et al.  The Flow Control , 1987 .

[80]  A. Monin,et al.  Turbulence in the ocean , 1985 .

[81]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .