Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes

[1]  T. Hashimoto,et al.  Microfiltration and Ultrafiltration , 2008 .

[2]  Somnath C. Roy,et al.  The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. , 2007, Biomaterials.

[3]  Craig A. Grimes,et al.  TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion , 2007 .

[4]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[5]  Lara Leoni,et al.  Biocompatibility of nanoporous alumina membranes for immunoisolation. , 2007, Biomaterials.

[6]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[7]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[8]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[9]  G. Pang,et al.  Direct synthesis of nanowires with anatase and TiO2-B structures at near ambient conditions. , 2006, The journal of physical chemistry. B.

[10]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[11]  C. Grimes,et al.  Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO 2 Nanotube-Arrays 20 μ m to 222 μ m in Length , 2006 .

[12]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[13]  C. R. Martin,et al.  Template synthesized nanotubes for biomedical delivery applications. , 2006, Nanomedicine.

[14]  R. Vendamme,et al.  Robust free-standing nanomembranes of organic/inorganic interpenetrating networks , 2006, Nature materials.

[15]  Craig A. Grimes,et al.  Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements , 2006 .

[16]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[17]  Tejal A Desai,et al.  Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility. , 2005, Diabetes technology & therapeutics.

[18]  Tejal A Desai,et al.  Influence of nanoporous alumina membranes on long-term osteoblast response. , 2005, Biomaterials.

[19]  C. Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[20]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[21]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[22]  C. Grimes,et al.  A room-temperature TiO_2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[23]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[24]  W M Reichert,et al.  Engineering the tissue which encapsulates subcutaneous implants. II. Plasma-tissue exchange properties. , 1998, Journal of biomedical materials research.