The Ubiquitous Young Tableau
暂无分享,去创建一个
[1] Bruce E. Sagan. Shifted tableaux, schur Q-functions, and a conjecture of R. Stanley , 1987, J. Comb. Theory, Ser. A.
[2] Donald E. Knuth,et al. The art of computer programming: sorting and searching (volume 3) , 1973 .
[3] A.M Garsia,et al. A Rogers-Ramanujan Bijection , 1981, J. Comb. Theory, Ser. A.
[4] Bruce E. Sagan,et al. Enumeration of Partitions with Hooklengths , 1982, Eur. J. Comb..
[5] A. P. Hillman,et al. Reverse Plane Partitions and Tableau Hook Numbers , 1976, J. Comb. Theory A.
[6] Allan Berele,et al. A schensted-type correspondence for the symplectic group , 1986, J. Comb. Theory, Ser. A.
[7] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[8] W. Ledermann. Introduction to Group Characters , 1977 .
[9] Joseph P. S. Kung,et al. Invariant theory, Young bitableaux, and combinatorics , 1978 .
[10] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[11] C. Schensted. Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.
[12] Sheila Sundaram. On the combinatorics of representations of Sp(2n,C) , 1986 .
[13] Curtis Greene,et al. An Extension of Schensted's Theorem , 1974 .
[14] E. Gansner,et al. Matrix correspondences and the enumeration of plane partitions. , 1978 .
[15] R. Stanley. Ordered Structures And Partitions , 1972 .
[16] R. M. Grassl,et al. Reverse Plane Partitions and Tableau Hook Numbers , 1982 .
[17] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[18] Doron Zeilberger,et al. A Bijective Proof of the Hook-Length Formula , 1982, J. Algorithms.
[19] A. Young. On Quantitative Substitutional Analysis (Second Paper) , 1901 .
[20] J. Schur,et al. Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. , 1911 .
[21] G. Viennot,et al. Une forme geometrique de la correspondance de Robinson-Schensted , 1977 .
[22] A. Morris. A survey on Hall-Littlewood functions and their applications to representation theory , 1977 .
[23] J. Remmel. Bijective proofs of formulae for the number of standard Yound tableaux , 1982 .
[24] Dale Raymond Worley,et al. A theory of shifted Young tableaux , 1984 .
[25] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[26] H. Wilf,et al. A probabilistic proof of a formula for the number of Young tableaux of a given shape , 1979 .
[27] J. Stembridge. Shifted tableaux and the projective representations of symmetric groups , 1989 .
[28] Alfred Young. On Quantitative Substitutional Analysis , 1928 .
[29] Marcel P. Schützenberger. Quelques remarques sur une Construction de Schensted. , 1963 .
[30] M. Wodzicki. Lecture Notes in Math , 1984 .
[31] Ira M. Gessel,et al. Determinants, Paths, and Plane Partitions , 1989 .
[32] G. Viennot,et al. Chain and Antichain Families Grids and Young Tableaux , 1984 .
[33] F. Murnaghan,et al. On the Representations of the Symmetric Group , 1937 .
[34] Mark D. Haiman. On mixed insertion, symmetry, and shifted young tableaux , 1989, J. Comb. Theory, Ser. A.
[35] Gian-Carlo Rota,et al. On the Foundations of Combinatorial Theory: IX Combinatorial Methods in Invariant Theory , 1974 .
[36] Doron Zeilberger,et al. A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof , 1984, Discret. Math..
[37] Alfred Young. On Quantitative Substitutional Analysis , 1930 .
[38] Bruce E. Sagan,et al. On Selecting a Random Shifted Young Tableau , 1980, J. Algorithms.
[39] Bruce E. Sagan. An Analog of Schensted's Algorithm for Shifted Young Tableaux , 1979, J. Comb. Theory, Ser. A.
[40] Glânffrwd P. Thomas,et al. On a construction of schützenberger , 1977, Discret. Math..