Fast spike pattern detection using the correlation integral.

Conventional approaches to detect patterns in neuronal firing are template based. As the pattern length increases, the number of trial patterns to be tested leads to strongly divergent computational costs. To remedy this problem, we propose a different statistical approach, based on the correlation integral. Applications of our method to model and neuronal data demonstrate its reliability, even in the presence of noise. Additionally, our investigation provides interesting insights into the nature of correlation-integral anomalies.

[1]  E. Vaadia,et al.  Spatiotemporal structure of cortical activity: properties and behavioral relevance. , 1998, Journal of neurophysiology.

[2]  R Stoop,et al.  Scaling properties of simple limiter control. , 2003, Physical review letters.

[3]  Mingzhou Ding,et al.  Estimating correlation dimension from a chaotic time series: when does plateau onset occur? , 1993 .

[4]  B L Strehler,et al.  Information Handling in the Nervous System: An Analogy to Molecular-Genetic Coder-Decoder Mechanisms , 2015, Perspectives in biology and medicine.

[5]  Igor V. Tetko,et al.  A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 2. Application to simultaneous single unit recordings , 2001, Journal of Neuroscience Methods.

[6]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[7]  Ruedi Stoop,et al.  Encounter with Chaos , 1992 .

[8]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[9]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[10]  G L Gerstein,et al.  Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. , 1988, Journal of neurophysiology.

[11]  Corron,et al.  Controlling chaos with simple limiters , 2000, Physical review letters.

[12]  P. Grassberger,et al.  Dimensions and entropies of strange attractors from a fluctuating dynamics approach , 1984 .

[13]  Willi-Hans Steeb,et al.  Generic origins of irregular spiking in neocortical networks , 2000, Biological Cybernetics.

[14]  G L Gerstein,et al.  Favored patterns in spike trains. II. Application. , 1983, Journal of neurophysiology.

[15]  A. N. Sharkovskiĭ Dynamic systems and turbulence , 1989 .

[16]  B. Strehler,et al.  Evidence on precise time-coded symbols and memory of patterns in monkey cortical neuronal spike trains. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[18]  Kaspar Anton Schindler,et al.  Noise-Driven Neocortical Interaction: A Simple Generation Mechanism for Complex Neuron Spiking , 2000, Acta biotheoretica.

[19]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[20]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[21]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[22]  G L Gerstein,et al.  Favored patterns in spike trains. I. Detection. , 1983, Journal of neurophysiology.

[23]  M. Carandini,et al.  Suppression without Inhibition in Visual Cortex , 2002, Neuron.

[24]  Bernard L. Strehler,et al.  Time structure and stimulus dependence of precisely replicating patterns present in monkey cortical neuronal spike trains , 1987, Brain Research.

[25]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[26]  Sauer,et al.  Reconstruction of dynamical systems from interspike intervals. , 1994, Physical review letters.

[27]  Markus Christen,et al.  Collective bursting in layer IV. Synchronization by small thalamic inputs and recurrent connections. , 2002, Brain research. Cognitive brain research.

[28]  William Bialek,et al.  Statistical properties of spike trains: universal and stimulus-dependent aspects. , 1999, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Igor V. Tetko,et al.  A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 1. Detection of repeated patterns , 2001, Journal of Neuroscience Methods.