Sensitivity of the Mott–Schottky Analysis in Organic Solar Cells

The application of Mott–Schottky analysis to capacitance–voltage measurements of polymer:fullerene solar cells is a frequently used method to determine doping densities and built-in voltages, which have important implications for understanding the device physics of these cells. Here we compare drift-diffusion simulations with experiments to explore the influence and the detection limit of doping in situations where device thickness and doping density are too low for the depletion approximation to be valid. The results of our simulations suggest that the typically measured values on the order of 5 × 1016 cm–3 for doping density in thin films of 100 nm or lower may not be reliably determined from capacitance measurements and could originate from a completely intrinsic active layer. In addition, we explain how the violation of the depletion approximation leads to a strong underestimation of the actual built-in voltage by the built-in voltage VMS determined by Mott–Schottky analysis.

[1]  W. Shafarman,et al.  Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling , 2004 .

[2]  J. Werner,et al.  Reply to comments on "Electronic transport in dye-sensitized nanoporous TiO2 solar cells-comparison of electrolyte and solid-state devices". On the photovoltaic action in pn-junction and dye-sensitized solar cells , 2003 .

[3]  Juan Bisquert,et al.  Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy , 2008 .

[4]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[5]  Germà Garcia-Belmonte,et al.  Determination of gap defect states in organic bulk heterojunction solar cells from capacitance measurements , 2009 .

[6]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[7]  A. Tiwari,et al.  Defect distributions in thin film solar cells deduced from admittance measurements under different bias voltages , 2011 .

[8]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[9]  Juan Bisquert,et al.  Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy , 2010 .

[10]  C. Deibel,et al.  Influence of charge carrier mobility on the performance of organic solar cells , 2008, 0806.2249.

[11]  James C. Blakesley,et al.  Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells , 2011 .

[12]  F. Fabregat‐Santiago,et al.  Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[13]  C. Deibel,et al.  Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells , 2011, 1109.5528.

[14]  Kristian O. Sylvester-Hvid,et al.  Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy , 2007 .

[15]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[16]  Vladimir Dyakonov,et al.  Polymer–fullerene bulk heterojunction solar cells , 2010, 1003.0359.

[17]  C. Deibel,et al.  Photocurrent in bulk heterojunction solar cells , 2010, 1001.2546.

[18]  J. Bisquert,et al.  Band unpinning and photovoltaic model for P3HT:PCBM organic bulk heterojunctions under illumination , 2008 .

[19]  Juan Bisquert,et al.  Role of ZnO Electron-Selective Layers in Regular and Inverted Bulk Heterojunction Solar Cells , 2011 .

[20]  D. Rauh,et al.  S-shaped current-voltage characteristics of organic solar devices , 2010, 1005.5669.

[21]  Steven Holdcroft,et al.  INTERACTION OF OXYGEN WITH CONJUGATED POLYMERS : CHARGE TRANSFER COMPLEX FORMATION WITH POLY(3-ALKYLTHIOPHENES) , 1997 .

[22]  P. Blom,et al.  Origin of the efficiency enhancement in ferroelectric functionalized organic solar cells , 2011 .

[23]  V. Mihailetchi,et al.  Photocurrent generation in polymer-fullerene bulk heterojunctions. , 2004, Physical review letters.

[24]  M. Powalla,et al.  Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells , 2007 .

[25]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[26]  C. Brabec,et al.  Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. , 2011, Chemical Society reviews.

[27]  R. Coehoorn,et al.  Determination of injection barriers in organic semiconductor devices from capacitance measurements. , 2008, Physical review letters.

[28]  Thomas Kirchartz,et al.  Modeling Nongeminate Recombination in P3HT:PCBM Solar Cells , 2011 .

[29]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[30]  Sean E. Shaheen,et al.  Time-of-Flight Studies of Electron-Collection Kinetics in Polymer:Fullerene Bulk-Heterojunction Solar Cells , 2011 .

[31]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[32]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[33]  U. Würfel,et al.  Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic small-molecule solar cells , 2011 .

[34]  J. Bisquert,et al.  On Voltage, Photovoltage, and Photocurrent in Bulk Heterojunction Organic Solar Cells , 2011 .

[35]  Yang Yang,et al.  Energy level alignment of poly(3-hexylthiophene): [6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction , 2009 .

[36]  Thomas Strobel,et al.  Role of the Charge Transfer State in Organic Donor–Acceptor Solar Cells , 2010, Advanced materials.

[37]  Thomas Kirchartz,et al.  Recombination via tail states in polythiophene:fullerene solar cells , 2011 .

[38]  Marc Burgelman,et al.  Modeling thin‐film PV devices , 2004 .

[39]  Andreas Gombert,et al.  Impedance spectroscopy on organic bulk‐heterojunction solar cells , 2005 .

[40]  M. Burgelman,et al.  Investigation of defects by admittance spectroscopy measurements in poly (3-hexylthiophene):(6,6)-phenyl C61-butyric acid methyl ester organic solar cells degraded under air exposure , 2011 .

[41]  James C. Blakesley,et al.  Charge transfer at polymer-electrode interfaces: The effect of energetic disorder and thermal injection on band bending and open-circuit voltage , 2009 .

[42]  K. Taretto,et al.  Mobility dependent efficiencies of organic bulk heterojunction solar cells: Surface recombination and charge transfer state distribution , 2009 .

[43]  Juan Bisquert,et al.  Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells , 2003 .

[44]  A. Heeger,et al.  Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. , 2011, Journal of the American Chemical Society.

[45]  Valentin D. Mihailetchi,et al.  Device model for the operation of polymer/fullerene bulk heterojunction solar cells , 2005 .