A Moment-Matching Arnoldi Iteration for Linear Combinations of φ Functions

The action of the matrix exponential and related $\varphi$ functions on vectors plays an important role in the application of exponential integrators to ordinary differential equations. For the efficient evaluation of linear combinations of such actions we consider a new Krylov subspace algorithm. By employing Cauchy's integral formula an error representation of the numerical approximation is given. This is used to derive a priori error bounds that describe well the convergence behavior of the algorithm. Further, an efficient a posteriori estimate is constructed. Numerical experiments illustrating the convergence behavior are given in MATLAB.

[1]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[2]  Y. Saad Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..

[3]  Nicholas J. Higham,et al.  The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..

[4]  VALERIA SIMONCINI,et al.  MATRIX FUNCTIONS , 2006 .

[5]  Michel Crouzeix,et al.  Numerical range and functional calculus in Hilbert space , 2007 .

[6]  Lothar Reichel,et al.  Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..

[7]  Jörg Liesen,et al.  A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..

[8]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[9]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[10]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[11]  T. Fischer On the stability of some algorithms for computing the action of the matrix exponential , 2014 .

[12]  M. Gutknecht BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .

[13]  Valeria Simoncini,et al.  A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..

[14]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[15]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[16]  L. Knizhnerman Calculation of functions of unsymmetric matrices using Arnoldi's method , 1991 .

[17]  Marlis Hochbruck,et al.  Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..

[18]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[19]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[20]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[21]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[22]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[23]  Awad H. Al-Mohy,et al.  Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..

[24]  V. Simoncini,et al.  Preserving geometric properties of the exponential matrix by block Krylov subspace methods , 2006 .

[25]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[26]  S. Güttel Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .

[27]  L. Trefethen,et al.  Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .

[28]  M. N. Spijker Numerical ranges and stability estimates , 1993 .

[29]  Alexander Ostermann,et al.  Exponential Taylor methods: Analysis and implementation , 2013, Comput. Math. Appl..

[30]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[31]  Marlis Hochbruck,et al.  Residual, Restarting, and Richardson Iteration for the Matrix Exponential , 2010, SIAM J. Sci. Comput..

[32]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[33]  L. Knizhnerman,et al.  Two polynomial methods of calculating functions of symmetric matrices , 1991 .