A Moment-Matching Arnoldi Iteration for Linear Combinations of φ Functions
暂无分享,去创建一个
[1] I. Moret,et al. RD-Rational Approximations of the Matrix Exponential , 2004 .
[2] Y. Saad. Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..
[3] Nicholas J. Higham,et al. The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..
[4] VALERIA SIMONCINI,et al. MATRIX FUNCTIONS , 2006 .
[5] Michel Crouzeix,et al. Numerical range and functional calculus in Hilbert space , 2007 .
[6] Lothar Reichel,et al. Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..
[7] Jörg Liesen,et al. A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..
[8] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[9] Roland W. Freund,et al. Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.
[10] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .
[11] T. Fischer. On the stability of some algorithms for computing the action of the matrix exponential , 2014 .
[12] M. Gutknecht. BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .
[13] Valeria Simoncini,et al. A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..
[14] Joseph Lipka,et al. A Table of Integrals , 2010 .
[15] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[16] L. Knizhnerman. Calculation of functions of unsymmetric matrices using Arnoldi's method , 1991 .
[17] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[18] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[19] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[20] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[21] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[22] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[23] Awad H. Al-Mohy,et al. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..
[24] V. Simoncini,et al. Preserving geometric properties of the exponential matrix by block Krylov subspace methods , 2006 .
[25] Kerstin Vogler,et al. Table Of Integrals Series And Products , 2016 .
[26] S. Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .
[27] L. Trefethen,et al. Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .
[28] M. N. Spijker. Numerical ranges and stability estimates , 1993 .
[29] Alexander Ostermann,et al. Exponential Taylor methods: Analysis and implementation , 2013, Comput. Math. Appl..
[30] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[31] Marlis Hochbruck,et al. Residual, Restarting, and Richardson Iteration for the Matrix Exponential , 2010, SIAM J. Sci. Comput..
[32] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[33] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .