Bifurcations of beam-beam like maps
暂无分享,去创建一个
Giorgios Kollias | Giorgio Turchetti | G. Servizi | Ch. Skokos | G. Servizi | G. Turchetti | G. Kollias | C. Polymilis | C. Polymilis | C. Skokos
[1] H. G. Bothe. Gumowski, I./Mira, C., Dynamique chaotique. Transformations ponctuelles, Transition Ordre‐Désordre. Toulouse, Cepadues Editions 1980. 480 S , 1981 .
[2] James A. Yorke,et al. Dynamics: Numerical Explorations , 1994 .
[3] Ezio Todesco,et al. Giotto:. a Code for the Nonlinear Analysis of Area-Preserving Mappings , 1995 .
[4] T. Bountis. Period doubling bifurcations and universality in conservative systems , 1981 .
[5] G. Contopoulos. Orbits in Highly Perturbed Dynamical Systems. II. Stability of Periodic Orbits , 1970 .
[6] Ezio Todesco,et al. A normal form approach to the theory of nonlinear betatronic motion , 1994 .
[7] G. Benettin,et al. Further results on universal properties in conservative dynamical systems , 1980 .
[8] Lyons. Complex solutions for the scalar field model of the Universe. , 1992, Physical review. D, Particles and fields.
[9] M. Giovannozzi,et al. Resonant normal forms, interpolating Hamiltonians and stability analysis of area preserving maps , 1993 .
[10] G. Servizi,et al. A quantitative bifurcation analysis of Hénon-like 2D maps , 1996 .
[11] M. Hénon. Numerical study of quadratic area-preserving mappings , 1969 .
[12] G. Contopoulos. Infinite bifurcations, gaps and bubbles in Hamiltonian systems , 1983 .