Fast estimation of ion temperature from EAST charge exchange recombination spectroscopy using neural network

[1]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[2]  R. J. Fonck,et al.  Determination of plasma-ion velocity distribution via charge-exchange recombination spectroscopy , 1984 .

[3]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[4]  K. Burrell,et al.  Multichordal charge exchange recombination spectroscopy on the Doublet III tokamak , 1986 .

[5]  Geoffrey E. Hinton,et al.  Dimensionality Reduction and Prior Knowledge in E-Set Recognition , 1989, NIPS.

[6]  Russell Reed,et al.  Pruning algorithms-a survey , 1993, IEEE Trans. Neural Networks.

[7]  C. Bishop,et al.  Automatic analysis of JET charge exchange spectra using neural networks , 1993 .

[8]  E. Clothiaux,et al.  Neural Networks and Their Applications , 1994 .

[9]  K. Burrell,et al.  A neural network for the analysis of DIII-D charge exchange recombination data , 1994 .

[10]  R. Isler,et al.  An overview of charge-exchange spectroscopy as a plasma diagnostic , 1994 .

[11]  M. V. Hellermann,et al.  Modelling of passive charge exchange emission and neutral background density deduction in JET , 1999 .

[12]  J. Svensson,et al.  Analysis of JET charge exchange spectra using neural networks , 1999 .

[13]  Guang-Bin Huang,et al.  Learning capability and storage capacity of two-hidden-layer feedforward networks , 2003, IEEE Trans. Neural Networks.

[14]  A. G. Meigs,et al.  Real-time analysis of charge-exchange spectroscopy data at JET , 2003 .

[15]  Olivier Sauter,et al.  Integrated scenario in JET using real-time profile control , 2003 .

[16]  Y. Kamada,et al.  Development of Real-Time Measurement System of Charge Exchange Recombination Spectroscopy and Its Application to Feedback Control of Ion Temperature Gradient in JT-60U , 2007 .

[17]  J. B. Lister,et al.  Plasma control systems relevant to ITER and fusion power plants , 2008 .

[18]  Y. Kamada,et al.  Real-time measurement and feedback control of ion temperature profile and toroidal rotation using fast CXRS system in JT-60U , 2009 .

[19]  Use of the Genetic Algorithm for Analyzing the Charge-Exchange Recombination Spectroscopy Measurements on the Tore Supra Tokamak , 2009 .

[20]  X. Litaudon Real-Time Control of Advanced Scenarios for Steady-State Tokamak Operation , 2011 .

[21]  R. Dux,et al.  Investigation of passive edge emission in charge exchange spectra at the ASDEX Upgrade tokamak , 2011 .

[22]  R. Bell,et al.  A real-time velocity diagnostic for NSTX. , 2012, The Review of scientific instruments.

[23]  Yahong Xie,et al.  The R&D progress of 4 MW EAST-NBI high current ion source. , 2014, The Review of scientific instruments.

[24]  Q. P. Wang,et al.  Development of the charge exchange recombination spectroscopy and the beam emission spectroscopy on the EAST tokamak. , 2014, The Review of scientific instruments.

[25]  W. Yanling,et al.  Analysis of charge-exchange spectroscopy data by combining genetic and Gauss-Newton algorithms , 2015 .

[26]  Yingying Li,et al.  Calibration of the toroidal Charge eXchange Recombination Spectroscopy system on EAST , 2015 .

[27]  Yingying Li,et al.  Toroidal charge exchange recombination spectroscopy on EAST , 2015 .

[28]  R. Bell,et al.  Initial operation of the NSTX-Upgrade real-time velocity diagnostic , 2016 .

[29]  Xiaoping Zhou,et al.  First measurement of the edge charge exchange recombination spectroscopy on EAST tokamak. , 2016, Review of Scientific Instruments.