Complexity Analysis of Escher’s Art

Art is the output of a complex system based on the human spirit and driven by several inputs that embed social, cultural, economic and technological aspects of a given epoch. A solid quantitative analysis of art poses considerable difficulties and reaching assertive conclusions is a formidable challenge. In this paper, we adopt complexity indices, dimensionality-reduction and visualization techniques for studying the evolution of Escher’s art. Grayscale versions of 457 artworks are analyzed by means of complexity indices and represented using the multidimensional scaling technique. The results are correlated with the distinct periods of Escher’s artistic production. The time evolution of the complexity and the emergent patterns demonstrate the effectiveness of the approach for a quantitative characterization of art.

[1]  Filippos Vallianatos,et al.  Generalized statistical mechanics approaches to earthquakes and tectonics , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[3]  José António Tenreiro Machado,et al.  Fractional Jensen-Shannon Analysis of the Scientific Output of Researchers in Fractional Calculus , 2017, Entropy.

[4]  Daniel P. Berrar,et al.  Multidimensional scaling with discrimination coefficients for supervised visualization of high-dimensional data , 2011, Neural Computing and Applications.

[5]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers. Definitions, theorems, and formulas for reference and review , 1968 .

[6]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[7]  Joachim Denzler,et al.  1/f2 Characteristics and Isotropy in the Fourier Power Spectra of Visual Art, Cartoons, Comics, Mangas, and Different Categories of Photographs , 2010, PloS one.

[8]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[9]  Aleksey Porollo,et al.  CoeViz: A Web-Based Integrative Platform for Interactive Visualization of Large Similarity and Distance Matrices , 2018, Data.

[10]  Péter Gács,et al.  Information Distance , 1998, IEEE Trans. Inf. Theory.

[11]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[12]  Lynn Gamwell Mathematics and Art: A Cultural History , 2015 .

[13]  António M. Lopes,et al.  Artistic painting: A fractional calculus perspective , 2019, Applied Mathematical Modelling.

[14]  Ming Li,et al.  Clustering by compression , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[15]  S. Nascimento,et al.  Statistics of colors in paintings and natural scenes. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Michele Emmer,et al.  The visual mind: art and mathematics , 1993 .

[17]  Osvaldo A. Rosso,et al.  Generalized statistical complexity measures: Geometrical and analytical properties , 2006 .

[18]  Armando J. Pinho,et al.  Image similarity using the normalized compression distance based on finite context models , 2011, 2011 18th IEEE International Conference on Image Processing.

[19]  Seung-Woo Son,et al.  Large-Scale Quantitative Analysis of Painting Arts , 2014, Scientific Reports.

[20]  Nikolai K. Vereshchagin,et al.  Kolmogorov Complexity with Error , 2006, STACS.

[21]  Attila Szolnoki,et al.  Statistical Physics of Human Cooperation , 2017, ArXiv.

[22]  Alan E. Shapiro,et al.  Math and the Mona Lisa: The Art and Science of Leonardo da Vinci , 2005 .

[23]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[24]  Matjaž Perc,et al.  History of art paintings through the lens of entropy and complexity , 2018, Proceedings of the National Academy of Sciences.

[25]  Eberhard F. Kochs,et al.  Permutation Entropy: Too Complex a Measure for EEG Time Series? , 2017, Entropy.

[26]  Nasir Saeed,et al.  A Survey on Multidimensional Scaling , 2018, ACM Comput. Surv..

[27]  Abraham Lempel,et al.  On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.

[28]  Haroldo V. Ribeiro,et al.  Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane , 2016, ArXiv.

[29]  Goren Gordon Multi-dimensional Linguistic Complexity , 2003, Journal of biomolecular structure & dynamics.

[30]  Christian Wallraven,et al.  Perceptual and Computational Categories in Art , 2008, CAe.

[31]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[32]  Alfonso Ortega,et al.  Common Pitfalls Using the Normalized Compression Distance: What to Watch Out for in a Compressor , 2005, Commun. Inf. Syst..

[33]  Péter Gács,et al.  Information Distance , 1998, IEEE Trans. Inf. Theory.

[34]  José António Tenreiro Machado,et al.  Tidal Analysis Using Time-Frequency Signal Processing and Information Clustering , 2017, Entropy.

[35]  José António Tenreiro Machado,et al.  Multidimensional Scaling Visualization Using Parametric Similarity Indices , 2015, Entropy.

[36]  J. V. Field LINEAR PERSPECTIVE AND THE PROJECTIVE GEOMETRY OF GIRARD DESARGUES , 1987 .

[37]  R. Nicki,et al.  Uncertainty and preference for ‘ambiguous’ figures, ‘impossible’ figures and the drawings of M. C. Escher , 1979 .

[38]  E. M. De la Calleja,et al.  Order-fractal transitions in abstract paintings , 2016 .

[39]  J-P Boon,et al.  Artistic forms and complexity. , 2011, Nonlinear dynamics, psychology, and life sciences.

[40]  António M. Lopes,et al.  Multidimensional scaling analysis of soccer dynamics , 2017 .

[41]  António M. Lopes,et al.  Analysis of Natural and Artificial Phenomena Using Signal Processing and Fractional Calculus , 2015 .

[42]  O A Rosso,et al.  Distinguishing noise from chaos. , 2007, Physical review letters.

[43]  José António Tenreiro Machado,et al.  Complexity Analysis of Global Temperature Time Series , 2018, Entropy.

[44]  N. Dodgson Mathematical characterization of Bridget Riley's stripe paintings , 2012 .

[45]  Simone G. O. Fiori Visualization of Riemannian-manifold-valued elements by multidimensional scaling , 2011, Neurocomputing.

[46]  L. Shiner The Invention of Art: A Cultural History , 2001 .

[47]  Bin Ma,et al.  The similarity metric , 2001, IEEE Transactions on Information Theory.

[48]  Robert M. Gray,et al.  Entropy and Information , 1990 .

[49]  J. A. Tenreiro Machado,et al.  Kolmogorov complexity as a data similarity metric: application in mitochondrial DNA , 2018 .

[50]  R. Talbot Manifold Mirrors: The Crossing Paths of the Arts and Mathematics , 2015 .

[51]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[52]  E. K. Lenzi,et al.  Complexity-Entropy Causality Plane as a Complexity Measure for Two-Dimensional Patterns , 2012, PloS one.

[53]  Ricardo López-Ruiz,et al.  A Statistical Measure of Complexity , 1995, ArXiv.

[54]  Trevor I. Dix,et al.  Comparative analysis of long DNA sequences by per element information content using different contexts , 2007, BMC Bioinformatics.