Transmission electron microscope as an ultimate tool for nanomaterial property studies.

In this review, a non-standard application of high-resolution transmission electron microscope (HRTEM), namely the creation of so-called NanoLaboratory for the nanomaterial property studies within its pole piece, is presented. The most modern research trends with respect to nanotube, graphene and nanowire, as well as electrical, mechanical and electromechanical properties are demonstrated. In addition, the unique possibilities of modeling real technological processes inside HRTEM, for example, the performance of Li-ion batteries, are illustrated. The contribution particularly highlights the recent research endeavors of our Tsukuba group in line with all the above-mentioned directions of in situ TEM.

[1]  Zhong Lin Wang,et al.  Characterization of impurity doping and stress in Si/Ge and Ge/Si core-shell nanowires. , 2012, ACS nano.

[2]  Majid Minary-Jolandan,et al.  A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires , 2012, Advanced materials.

[3]  X. Bai,et al.  The Piezotronic Effect of Zinc Oxide Nanowires Studied by In Situ TEM , 2012, Advanced materials.

[4]  Yuefei Zhang,et al.  Size-dependent bandgap modulation of ZnO nanowires by tensile strain. , 2012, Nano letters.

[5]  D. Golberg,et al.  Nanoscale bending of multilayered boron nitride and graphene ribbons: experiment and objective molecular dynamics calculations. , 2012, Physical review letters.

[6]  Liang Li,et al.  N‐Doped Graphene‐SnO2 Sandwich Paper for High‐Performance Lithium‐Ion Batteries , 2012 .

[7]  Tianyou Zhai,et al.  Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy. , 2012, Chemical communications.

[8]  Chang Liu,et al.  Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. , 2012, Nano letters.

[9]  L. Vandersypen,et al.  Graphene at high bias: cracking, layer by layer sublimation, and fusing. , 2012, Nano letters.

[10]  J. Connell,et al.  In situ mechanical property measurements of amorphous carbon–boron nitride nanotube nanostructures , 2012, Nanotechnology.

[11]  Jing Kong,et al.  Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. , 2012, Nano letters.

[12]  D. Golberg,et al.  Local temperature measurements on nanoscale materials using a movable nanothermocouple assembled in a transmission electron microscope , 2011, Nanotechnology.

[13]  Y. Bando,et al.  Self-stacked Co3O4 nanosheets for high-performance lithium ion batteries. , 2011, Chemical communications.

[14]  Yu‐Guo Guo,et al.  A facile synthesis and lithium storage properties of Co3O4–C hybrid core-shell and hollow spheres , 2011 .

[15]  Y. Bando,et al.  Coaxial Cu-Si@C array electrodes for high-performance lithium ion batteries. , 2011, Chemical communications.

[16]  Yan Wang,et al.  Electrical breakdown of nanowires. , 2011, Nano letters.

[17]  Guang Zhu,et al.  Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. , 2011, Nano letters.

[18]  Jing Zhu,et al.  Electron microscopy and in situ testing of mechanical deformation of carbon nanotubes. , 2011, Micron.

[19]  H. Ghassemi,et al.  In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. , 2011, ACS nano.

[20]  E. Henriksen,et al.  Quantum Hall Effect and Semimetallic Behavior of Dual-Gated ABA-Stacked Trilayer Graphene , 2011, 1109.2385.

[21]  Xiaofeng Qian,et al.  Lithiation-induced embrittlement of multiwalled carbon nanotubes. , 2011, ACS nano.

[22]  Chang Liu,et al.  Mechanical properties of bamboo-like boron nitride nanotubes by in situ TEM and MD simulations: strengthening effect of interlocked joint interfaces. , 2011, ACS nano.

[23]  Sang-jun Choi,et al.  In Situ Observation of Voltage‐Induced Multilevel Resistive Switching in Solid Electrolyte Memory , 2011, Advanced materials.

[24]  Harold S. Park,et al.  Superplastic deformation of defect-free Au nanowires via coherent twin propagation. , 2011, Nano letters.

[25]  Hua Guo,et al.  Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO₂ nanowires. , 2011, Nano letters.

[26]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[27]  K. Ryu,et al.  Synthesis and Performance of CuO with Complex Hollow Structure as Anode Material for Lithium Secondary Batteries , 2011 .

[28]  Y. Wang,et al.  The shear mode of multilayer graphene. , 2011, Nature materials.

[29]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[30]  X. Bai,et al.  Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. , 2011, ACS nano.

[31]  Ting Zhu,et al.  Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. , 2011, ACS nano.

[32]  Ze Zhang,et al.  Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. , 2011, Nano letters.

[33]  Y. Bando,et al.  Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. , 2011, ACS nano.

[34]  He Zheng,et al.  In situ nanomechanics of GaN nanowires. , 2011, Nano letters.

[35]  Lin Gu,et al.  Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. , 2011, Journal of the American Chemical Society.

[36]  Horacio D Espinosa,et al.  Effect of growth orientation and diameter on the elasticity of GaN nanowires. A combined in situ TEM and atomistic modeling investigation. , 2011, Nano letters.

[37]  David C. Miller,et al.  Dependence on diameter and growth direction of apparent strain to failure of Si nanowires , 2011 .

[38]  W. Park,et al.  Exploring Nanomechanical Behavior of Silicon Nanowires: AFM Bending Versus Nanoindentation , 2011 .

[39]  R. Li,et al.  A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal. , 2011, Angewandte Chemie.

[40]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[41]  Y. Bando,et al.  Tensile Tests on Individual Multi‐Walled Boron Nitride Nanotubes , 2010, Advanced materials.

[42]  Wanlin Guo,et al.  "White graphenes": boron nitride nanoribbons via boron nitride nanotube unwrapping. , 2010, Nano letters.

[43]  Y. Bando,et al.  Tensile Tests on Individual Single‐Walled Carbon Nanotubes: Linking Nanotube Strength with Its Defects , 2010, Advanced materials.

[44]  W. Cai,et al.  Size and temperature effects on the fracture mechanisms of silicon nanowires: Molecular dynamics simulations , 2010 .

[45]  Zhong Lin Wang,et al.  Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires. , 2010, ACS nano.

[46]  G. Eda,et al.  Chemically Derived Graphene Oxide: Towards Large‐Area Thin‐Film Electronics and Optoelectronics , 2010, Advanced materials.

[47]  Yu‐Guo Guo,et al.  Synthesis and Lithium Storage Properties of Co3O4 Nanosheet‐Assembled Multishelled Hollow Spheres , 2010 .

[48]  X. Bai,et al.  Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. , 2010, ACS nano.

[49]  Reymond Clavel,et al.  In Situ Electron Microscopy Mechanical Testing of Silicon Nanowires Using Electrostatically Actuated Tensile Stages , 2010, Journal of Microelectromechanical Systems.

[50]  A. Tkatchenko,et al.  Stacking and registry effects in layered materials: the case of hexagonal boron nitride. , 2010, Physical review letters.

[51]  Hong Guo,et al.  Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications , 2010 .

[52]  Sang-won Jee,et al.  Mechanical Properties of Silicon Nanowires , 2009, Nanoscale research letters.

[53]  Horacio D Espinosa,et al.  Experimental-computational investigation of ZnO nanowires strength and fracture. , 2009, Nano letters.

[54]  Y. J. Yan,et al.  Diameter dependence of modulus in zinc oxide nanowires and the effect of loading mode: In situ experiments and universal core-shell approach , 2009 .

[55]  Wei Lu,et al.  Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. , 2009, Nano letters.

[56]  Yu‐Guo Guo,et al.  Synthesis of Single-Crystalline Co3O4 Octahedral Cages with Tunable Surface Aperture and Their Lithium Storage Properties , 2009 .

[57]  S. Tolbert,et al.  Thermal conductivity of cubic and hexagonal mesoporous silica thin films , 2009 .

[58]  J. Michler,et al.  Brittle‐to‐Ductile Transition in Uniaxial Compression of Silicon Pillars at Room Temperature , 2009 .

[59]  Feng Liu,et al.  Highly Ordered, Millimeter‐Scale, Continuous, Single‐Crystalline Graphene Monolayer Formed on Ru (0001) , 2009 .

[60]  Xiaodong Han,et al.  Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. , 2009, Nano letters.

[61]  Thierry Baron,et al.  Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. , 2009, Nano letters.

[62]  L. Archer,et al.  Hollow Micro‐/Nanostructures: Synthesis and Applications , 2008 .

[63]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[64]  Wenjie Mai,et al.  Elastic Properties and Buckling of Silicon Nanowires , 2008 .

[65]  Eleftherios E. Gdoutos,et al.  Elasticity size effects in ZnO nanowires--a combined experimental-computational approach. , 2008, Nano letters.

[66]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[67]  Yongying Yang,et al.  A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries , 2008 .

[68]  Lianmao Peng,et al.  In situ TEM measurements of the mechanical properties and behavior of WS2 nanotubes , 2008 .

[69]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[70]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[71]  Xiaosong Wu,et al.  Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. , 2007, Physical review letters.

[72]  Dmitri Golberg,et al.  Boron Nitride Nanotubes , 2007 .

[73]  A. V. Fedorov,et al.  Substrate-induced bandgap opening in epitaxial graphene. , 2007, Nature materials.

[74]  S. Marchini,et al.  Scanning tunneling microscopy of graphene on Ru(0001) , 2007 .

[75]  X. Han,et al.  Low‐Temperature In Situ Large‐Strain Plasticity of Silicon Nanowires , 2007, Advanced Materials.

[76]  Jeroen van den Brink,et al.  Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations , 2007 .

[77]  S. Sarma,et al.  Measurement of scattering rate and minimum conductivity in graphene. , 2007, Physical review letters.

[78]  Michael L. Roukes,et al.  Very High Frequency Silicon Nanowire Electromechanical Resonators , 2007 .

[79]  Keon Wook Kang,et al.  Brittle and ductile fracture of semiconductor nanowires – molecular dynamics simulations , 2007 .

[80]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[81]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[82]  T. Dumitricǎ,et al.  Extended tight-binding potential for modelling intertube interactions in carbon nanotubes , 2007 .

[83]  J. Boland,et al.  Ultimate-strength germanium nanowires. , 2006, Nano letters.

[84]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[85]  Lianmao Peng,et al.  Shaping Carbon Nanotubes and the Effects on Their Electrical and Mechanical Properties , 2006 .

[86]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[87]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[88]  Christophe Ballif,et al.  Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. , 2006, Nano letters.

[89]  M. Dresselhaus,et al.  Superplastic carbon nanotubes , 2006, Nature.

[90]  Sidney R. Cohen,et al.  On the mechanical behavior of WS2 nanotubes under axial tension and compression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Lianmao Peng,et al.  Fabrication and Electrical and Mechanical Properties of Carbon Nanotube Interconnections , 2005 .

[92]  Horacio D Espinosa,et al.  An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[93]  R. Williams,et al.  Mechanical properties of self-welded silicon nanobridges , 2005 .

[94]  T. Kizuka,et al.  Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width , 2005 .

[95]  Bin Wu,et al.  Mechanical properties of ultrahigh-strength gold nanowires , 2005, Nature materials.

[96]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[97]  Y. Xiao,et al.  Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes , 2004 .

[98]  Krzysztof Pielichowski,et al.  Polymer Nanocomposites for Aerospace Applications: Fabrication , 2004 .

[99]  S. Akita,et al.  Orthopedic Treatment of Multiwalled Carbon Nanotube Probes , 2003 .

[100]  Y. Bando,et al.  A novel precursor for synthesis of pure boron nitride nanotubes. , 2002, Chemical communications.

[101]  J. Hone,et al.  Thermal properties of carbon nanotubes and nanotube-based materials , 2002 .

[102]  J. Tarascon,et al.  A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium , 2001 .

[103]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[104]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[105]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[106]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[107]  Alex Zettl,et al.  Measurement of the Elastic Modulus of a Multi-Wall Boron Nitride Nanotube , 1998 .

[108]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[109]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[110]  O. Motojima,et al.  Thermal response for divertor mock-up using surface-modified CFC tile , 1997 .

[111]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[112]  R. Duwe,et al.  Thermo-mechanical tests of a CFC divertor mock-up , 1994 .

[113]  Cohen,et al.  Theory of graphitic boron nitride nanotubes. , 1994, Physical review. B, Condensed matter.

[114]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[115]  L. Weber,et al.  Transport properties of silicon , 1991 .

[116]  R. Boughton,et al.  Thermoelectric power of pure gallium. II. Size and impurity effects , 1973 .

[117]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[118]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .