Probabilistic segmentation of volume data for visualization using SOM-PNN classifier

We present a new probabilistic classifier, called SOM-PNN classifier, for volume data classification and visualization. The new classifier produces probabilistic classification with Bayesian confidence measure which is highly desirable in volume rendering. Based on the SOM map trained with a large training data set, our SOM-PNN classifier performs the probabilistic classification using the PNN algorithm. This combined use of SOM and PNN overcomes the shortcomings of the parametric methods, the nonparametric methods, and the SOM method. The proposed SOM-PNN classifier has been used to segment the CT sloth data and the 20 human MRI brain volumes resulting in much more informative 3D rendering with more details and less artifacts than other methods. Numerical comparisons demonstrate that the SOM-PNN classifier is a fast, accurate and probabilistic classifier for volume rendering.

[1]  Nicholas Flynn,et al.  York , 1906, British medical journal.

[2]  Max A. Viergever,et al.  A Multiscale Approach to Image Segmentation Using Kohonen Networks , 1993, IPMI.

[3]  Arun D Kulkarni,et al.  Neural Networks for Pattern Recognition , 1991 .

[4]  D. Louis Collins,et al.  Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images , 1995, IEEE Trans. Medical Imaging.

[5]  Jane Wilhelms,et al.  DIRECT VOLUME RENDERING VIA 3D TEXTURES , 1994 .

[6]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[7]  Timothy Masters,et al.  Advanced algorithms for neural networks: a C++ sourcebook , 1995 .

[8]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[9]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[11]  Timothy Masters,et al.  Practical neural network recipes in C , 1993 .

[12]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[13]  Tianzhou Chen,et al.  Rendering of Surface and Volume Details in Volume Data * , 1995, Comput. Graph. Forum.

[14]  Benoit M. Dawant,et al.  Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study , 1993, IEEE Trans. Medical Imaging.

[15]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[16]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.