On the overestimation of the correlation dimension

The effect of non-linear mapping from the time domain to the phase space may result in an overestimation of the correlation dimension. We analyse the origin of the overestimation and suggest a criterion for the number of points necessary to approach the true scaling region in the correlation integral.

[1]  James A. Yorke,et al.  Noise Reduction: Finding the Simplest Dynamical System Consistent with the Data , 1989 .

[2]  A. Passamante,et al.  Using higher-order correlations to define an embedding window , 1991 .

[3]  Theiler,et al.  Spurious dimension from correlation algorithms applied to limited time-series data. , 1986, Physical review. A, General physics.

[4]  M. Möller,et al.  Errors from digitizing and noise in estimating attractor dimensions , 1989 .

[5]  M. Rosenstein,et al.  Reconstruction expansion as a geometry-based framework for choosing proper delay times , 1994 .

[6]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[7]  Schuster,et al.  Generalized dimensions and entropies from a measured time series. , 1987, Physical review. A, General physics.

[8]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[9]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[10]  J. D. Farmer,et al.  Optimal shadowing and noise reduction , 1991 .

[11]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[12]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[13]  Jedynak,et al.  Failure of dimension analysis in a simple five-dimensional system. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Itamar Procaccia,et al.  Complex or just complicated? , 1988, Nature.

[15]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[16]  Mike E. Davies,et al.  Noise reduction schemes for chaotic time series , 1994 .

[17]  Albano,et al.  Kolmogorov-Smirnov test distinguishes attractors with similar dimensions. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  J. M. Lipton,et al.  Reconstructing the state space of continuous time chaotic systems using power spectra , 1996 .

[19]  Albano,et al.  Filtered noise can mimic low-dimensional chaotic attractors. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  C. Essex,et al.  Correlation dimension and systematic geometric effects. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[21]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[22]  Leonard A. Smith Intrinsic limits on dimension calculations , 1988 .

[23]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[24]  J. B. Ramsey,et al.  Bias and error bars in dimension calculations and their evaluation in some simple models , 1989 .

[25]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[26]  Stephen M. Hammel,et al.  A noise reduction method for chaotic systems , 1990 .

[27]  T. Griffith,et al.  Temporal chaos in the microcirculation. , 1996, Cardiovascular research.

[28]  James B. Kadtke,et al.  Predictability of Complex Dynamical Systems , 1996 .

[29]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[30]  D. Ruelle,et al.  Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems , 1992 .

[31]  F. Takens Detecting strange attractors in turbulence , 1981 .

[32]  Yorke,et al.  Noise reduction in dynamical systems. , 1988, Physical review. A, General physics.