The MGPBiCG method for solving the generalized coupled Sylvester-conjugate matrix equations

In this paper, we extend the generalized product-type bi-conjugate gradient (GPBiCG) method for solving the generalized Sylvester-conjugate matrix equations A 1 X B 1 + C 1 Y ? D 1 = S 1 , A 2 X ? B 2 + C 2 Y D 2 = S 2 by the real representation of the complex matrix and the properties of Kronecker product and vectorization operator. Some numerical experiments demonstrate that the introduced iteration approach is efficient.

[1]  Changfeng Ma,et al.  Iterative Methods to Solve the Generalized Coupled Sylvester-Conjugate Matrix Equations for Obtaining the Centrally Symmetric (Centrally Antisymmetric) Matrix Solutions , 2014, J. Appl. Math..

[2]  Jun Wang,et al.  A recurrent neural network for solving Sylvester equation with time-varying coefficients , 2002, IEEE Trans. Neural Networks.

[3]  Peter Benner,et al.  Gramian-Based Model Reduction for Data-Sparse Systems , 2008, SIAM J. Sci. Comput..

[4]  Shankar P. Bhattacharyya,et al.  Controllability, observability and the solution of AX - XB = C , 1981 .

[5]  Lothar Reichel,et al.  Application of ADI Iterative Methods to the Restoration of Noisy Images , 1996, SIAM J. Matrix Anal. Appl..

[6]  Masoud Hajarian,et al.  Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations , 2013, J. Frankl. Inst..

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  V. Kučera The Matrix Equation $AX + XB = C$ , 1974 .

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[11]  Lin Dai,et al.  A modified gradient based algorithm for solving Sylvester equations , 2012, Appl. Math. Comput..

[12]  Xiang Wang,et al.  On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation AX-XB=C , 2013, Comput. Math. Appl..

[13]  Ai-Guo Wu,et al.  On solutions of the matrix equations XF , 2006, Appl. Math. Comput..

[14]  Masoud Hajarian,et al.  Extending the GPBiCG algorithm for solving the generalized Sylvester-transpose matrix equation , 2014 .

[15]  Zhong-Zhi Bai,et al.  Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations , 2006, Numer. Linear Algebra Appl..

[16]  Guoliang Chen,et al.  An efficient algorithm for solving extended Sylvester-conjugate transpose matrix equations , 2011 .

[17]  Zhen-Yun Peng A matrix LSQR iterative method to solve matrix equation AXB=C , 2010, Int. J. Comput. Math..

[18]  Huang Liping Consimilarity of quaternion matrices and complex matrices , 2001 .

[19]  Mehdi Dehghan,et al.  The generalized centro‐symmetric and least squares generalized centro‐symmetric solutions of the matrix equation AYB + CYTD = E , 2011 .

[20]  Jianzhou Liu,et al.  Iterative algorithms for the minimum-norm solution and the least-squares solution of the linear matrix equations A1XB1+C1XTD1=M1, A2XB2+C2XTD2=M2 , 2011, Appl. Math. Comput..

[21]  Qing-Wen Wang,et al.  Solvability conditions and general solution for mixed Sylvester equations , 2013, Autom..

[22]  Shao-Liang Zhang,et al.  GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..

[23]  Sang-Gu Lee,et al.  Simultaneous solutions of matrix equations and simultaneous equivalence of matrices , 2012 .

[24]  Chang-Feng Ma,et al.  The matrix iterative methods for solving a class of generalized coupled Sylvester-conjugate linear matrix equations , 2015 .

[25]  Yuan Lei,et al.  Least-squares solution with the minimum-norm for the matrix equation (AXB, GXH) = (C, D) , 2005 .

[26]  Ai-Guo Wu,et al.  On solutions of matrix equations V-AVF=BW and V-AV'F=BW , 2008, Math. Comput. Model..

[27]  Ai-Guo Wu,et al.  Iterative solutions to coupled Sylvester-conjugate matrix equations , 2010, Comput. Math. Appl..

[28]  Feng Ding,et al.  Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle , 2008, Appl. Math. Comput..

[29]  Mehdi Dehghan,et al.  The generalised Sylvester matrix equations over the generalised bisymmetric and skew-symmetric matrices , 2012, Int. J. Syst. Sci..

[30]  Musheng Wei,et al.  On solutions of the matrix equations X−AXB=C and X−AXB=C , 2003 .

[31]  Changfeng Ma,et al.  Iterative method to solve the generalized coupled Sylvester-transpose linear matrix equations over reflexive or anti-reflexive matrix , 2014, Comput. Math. Appl..

[32]  Z. Bai ON HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHODS FOR CONTINUOUS SYLVESTER EQUATIONS * , 2010 .

[33]  Xuehan Cheng,et al.  An algebraic relation between consimilarity and similarity of complex matrices and its applications , 2006 .

[34]  S. Bhattacharyya,et al.  Pole assignment via Sylvester's equation , 1982 .

[35]  Guoliang Chen,et al.  Iterative solutions to coupled Sylvester-transpose matrix equations☆ , 2011 .

[36]  Frank L. Lewis,et al.  Output feedback eigenstructure assignment using two Sylvester equations , 1993, IEEE Trans. Autom. Control..

[37]  Q. Niu,et al.  A relaxed gradient based algorithm for solving sylvester equations , 2011 .

[38]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[39]  Owe Axelsson,et al.  A Class of Nested Iteration Schemes for Linear Systems with a Coefficient Matrix with a Dominant Positive Definite Symmetric Part , 2004, Numerical Algorithms.

[40]  Yuan Lei,et al.  Best Approximate Solution of Matrix Equation AXB+CYD=E , 2005, SIAM J. Matrix Anal. Appl..

[41]  Salvatore D. Morgera,et al.  Some results on matrix symmetries and a pattern recognition application , 1986, IEEE Trans. Acoust. Speech Signal Process..