Constrained versions of Sauer's lemma

Let [n]={1,...,n}. For a function h:[n]->{0,1}, [email protected]?[n] and [email protected]?{0,1} define by the [email protected]"h(x,y) of h at x the largest nonnegative integer a such that h(z)=y on [email protected][email protected]?x+a. We consider finite VC-dimension classes of functions h constrained to have a width @w"h(x"i,y"i) which is larger than N for all points in a sample @z={(x"i,y"i)}"1^@? or a width no larger than N over the whole domain [n]. Extending Sauer's lemma, a tight upper bound with closed-form estimates is obtained on the cardinality of several such classes.

[1]  B. Bollobás Surveys in Combinatorics , 1979 .

[2]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[3]  B. Bollobás Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .

[4]  J Ratsaby,et al.  On the Complexity of Good Samples for Learning , 2003 .

[5]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[6]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science (2. ed.) , 1994 .

[7]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .

[8]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[9]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[10]  David Haussler,et al.  Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.

[11]  D. Pollard Convergence of stochastic processes , 1984 .

[12]  János Pach,et al.  Combinatorial Geometry , 2012 .

[13]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[14]  Philip M. Long,et al.  A Generalization of Sauer's Lemma , 1995, J. Comb. Theory A.

[15]  L. Gordon,et al.  Poisson Approximation and the Chen-Stein Method , 1990 .

[16]  Andrew D. Barbour,et al.  Compound Poisson approximation: a user's guide , 2001 .

[17]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[18]  Małgorzata Roos,et al.  Runs and Scans With Applications , 2001 .

[19]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[20]  Martin Anthony,et al.  Maximal width learning of binary functions , 2010, Theor. Comput. Sci..

[21]  Peter Frankl,et al.  On the Trace of Finite Sets , 1983, J. Comb. Theory, Ser. A.

[22]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[23]  Colin Cooper,et al.  The vapnik-chervonenkis dimension of a random graph , 1995, Discret. Math..

[24]  Peter L. Bartlett,et al.  Learning in Neural Networks: Theoretical Foundations , 1999 .

[25]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[26]  I. S. Shiganov Refinement of the upper bound of the constant in the central limit theorem , 1986 .

[27]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[28]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[29]  Michael R. Chernick,et al.  Runs and Scans With Applications , 2002, Technometrics.

[30]  Vladimir V. Senatov Normal Approximation: New Results, Methods and Problems , 1998 .

[31]  P. V. Beek,et al.  An application of Fourier methods to the problem of sharpening the Berry-Esseen inequality , 1972 .