Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design

The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time with a high sensitivity to the parameter. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases and the consequent estimate of velocity tends to have lower variance. (3) The frequency of sampling must be “in phase” with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise and thus have limited value in predicting variance in parameter estimates among designs. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters. (8) The time and space interval over which an observation point is sensitive to a given parameter depends on the actual values of the parameters in the underlying physical system.

[1]  L. Lapidus,et al.  Mathematics of Adsorption in Beds. VI. The Effect of Longitudinal Diffusion in Ion Exchange and Chromatographic Columns , 1952 .

[2]  J. Kiefer,et al.  Optimum Designs in Regression Problems , 1959 .

[3]  R. Banks,et al.  A solution of the differential equation of longitudinal dispersion in porous media , 1961 .

[4]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[5]  Rajko Tomović,et al.  Sensitivity analysis of dynamic systems , 1963 .

[6]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[7]  R. Haque,et al.  The movement of some herbicides in soils. Linear diffusion and convection of chemicals in soils. , 1967, Environmental science & technology.

[8]  Andrej Pázman,et al.  Design of Physical Experiments (Statistical Methods) , 1968, 1968.

[9]  A. Nir,et al.  Effects of Boundary Conditions of Models on Tracer Distribution in Flow through Porous Mediums , 1969 .

[10]  R. C. Erdmann,et al.  Sensitivity analysis method of system identification and its potential in hydrologic research , 1969 .

[11]  S. P. Neuman Calibration of distributed parameter groundwater flow models viewed as a multiple‐objective decision process under uncertainty , 1973 .

[12]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .

[13]  Richard H. McCuen Component sensitivity: A tool for the analysis of complex water resource systems , 1973 .

[14]  K. Shuler,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. II Applications , 1973 .

[15]  William Wen-Gong Yeh Aquifer Parameter Identification , 1975 .

[16]  R. C. St. John,et al.  D-Optimality for Regression Designs: A Review , 1975 .

[17]  R. Freeze A stochastic‐conceptual analysis of one‐dimensional groundwater flow in nonuniform homogeneous media , 1975 .

[18]  K. Shuler,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations , 1975 .

[19]  J. W. Biggar,et al.  Spatial variability of the leaching characteristics of a field soil , 1976 .

[20]  Richard L. Cooley,et al.  A method of estimating parameters and assessing reliability for models of steady state groundwater flow: 1. Theory and numerical properties , 1977 .

[21]  K. Shuler,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[22]  Carl D. McElwee,et al.  Sensitivity of groundwater models with respect to variations in transmissivity and storage , 1978 .

[23]  Richard L. Cooley,et al.  A method of estimating parameters and assessing reliability for models of steady state Groundwater flow: 2. Application of statistical analysis , 1979 .

[24]  Robert Willis,et al.  Identification of aquifer dispersivities in two-dimensional transient groundwater Contaminant transport: An optimization approach , 1979 .

[25]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[26]  Ali H. Dogru,et al.  Sensitivity analysis of partial differential equations with application to reaction and diffusion processes , 1979 .

[27]  J. Seinfeld,et al.  Automatic sensitivity analysis of kinetic mechanisms , 1979 .

[28]  S. P. Neuman A statistical approach to the inverse problem of aquifer hydrology: 3. Improved solution method and added perspective , 1980 .

[29]  M. Koda,et al.  Sensitivity analysis of distributed parameter systems , 1982 .

[30]  Sensitivity Analysis and the Ground‐Water Inverse Problem , 1982 .

[31]  D. R. Nielsen,et al.  Soil Solute Concentration Distributions for Spatially Varying Pore Water Velocities and Apparent Diffusion Coefficients 1 , 1982 .

[32]  J. Seinfeld,et al.  Development of a second-generation mathematical model for Urban air pollution—I. Model formulation , 1982 .

[33]  Masato Koda,et al.  Sensitivity analysis of the atmospheric diffusion equation , 1982 .

[34]  N. N. Chan A-Optimality for Regression Designs. , 1982 .

[35]  Jack C. Parker,et al.  Determining transport parameters from laboratory and field tracer experiments , 1984 .

[36]  ADJOINT STATE FINITE ELEMENT ESTIMATION OF AQUIFER PARAMETERS UNDER STEADY-STATE AND TRANSIENT CONDITIONS , 1984 .

[37]  R. J. Gilliom,et al.  ESTIMATION OF DISTRIBUTIONAL PARAMETERS FOR CENSORED TRACE-LEVEL WATER-QUALITY DATA , 1984 .

[38]  W. G. Hunter,et al.  Experimental Design: Review and Comment , 1984 .

[39]  W. Yeh,et al.  An Extended Identifiability in Aquifer Parameter Identification and Optimal Pumping Test Design , 1984 .

[40]  J. C. Ramírez,et al.  Estimation of aquifer parameters under transient and steady-state conditions , 1984 .

[41]  Richard L. Cooley,et al.  A Comparison of Several Methods of Solving Nonlinear Regression Groundwater Flow Problems , 1985 .

[42]  R. W. Andrews,et al.  Sensitivity Analysis for Steady State Groundwater Flow Using Adjoint Operators , 1985 .

[43]  Steven M. Gorelick,et al.  A Statistical Methodology for Estimating Transport Parameters: Theory and Applications to One‐Dimensional Advectivec‐Dispersive Systems , 1986 .

[44]  Wen-sen Chu,et al.  Parameter Identification of a Ground‐Water Contaminant Transport Model , 1986 .

[45]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[46]  Robert J. Gilliom,et al.  Estimation of Distributional Parameters for Censored Trace Level Water Quality Data: 1. Estimation Techniques , 1986 .

[47]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[48]  D. Knopman Analytically-derived sensitivities in one-dimensional models of solute transport in porous media , 1987 .