Capturing contextual relationship for effective media search

One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. In this paper, we assume the semantics of media is determined by the contextual relationship in a dataset, and introduce the method to capture the contextual information from a large media (especially image) dataset for effective search. Similarity search in an image database based on this contextual information shows encouraging experimental results.

[1]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[2]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[3]  Ling Guan,et al.  An interactive approach for CBIR using a network of radial basis functions , 2004, IEEE Transactions on Multimedia.

[4]  Edward Y. Chang,et al.  Formulating context-dependent similarity functions , 2005, MULTIMEDIA '05.

[5]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[6]  Bernhard Schölkopf,et al.  Comparing support vector machines with Gaussian kernels to radial basis function classifiers , 1997, IEEE Trans. Signal Process..

[7]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[8]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[9]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[10]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[11]  Michael R. Lyu,et al.  A novel log-based relevance feedback technique in content-based image retrieval , 2004, MULTIMEDIA '04.

[12]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[13]  Christos Faloutsos,et al.  Automatic image captioning , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[14]  David A. Forsyth,et al.  Learning the semantics of words and pictures , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[15]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[16]  Dan I. Moldovan,et al.  Exploiting ontologies for automatic image annotation , 2005, SIGIR '05.

[17]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[18]  Wei-Ying Ma,et al.  Learning an image manifold for retrieval , 2004, MULTIMEDIA '04.

[19]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[20]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.

[21]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Edward Y. Chang,et al.  DynDex: a dynamic and non-metric space indexer , 2002, MULTIMEDIA '02.

[23]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[24]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[25]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[26]  Christos Faloutsos,et al.  FALCON: Feedback Adaptive Loop for Content-Based Retrieval , 2000, VLDB.