Maplets for correspondence-based object recognition

We present a correspondence-based system for visual object recognition with invariance to position, orientation, scale and deformation. The system is intermediate between high- and low-dimensional representations of correspondences. The essence of the approach is based on higher-order links, called here maplets, which are specific to narrow ranges of mapping parameters (position, scale and orientation), which interact cooperatively with each other, and which are assumed to be formed by learning. While being based on dynamic links, the system overcomes previous problems with that formulation in terms of speed of convergence and range of allowed variation. We perform face recognition experiments, comparing ours to other published systems. We see our work as a step towards a reformulation of neural dynamics that includes rapid network self-organization as essential aspect of brain state organization.

[1]  Edmund T. Rolls,et al.  Invariant recognition of feature combinations in the visual system , 2002, Biological Cybernetics.

[2]  Heiko Wersing,et al.  Learning Optimized Features for Hierarchical Models of Invariant Object Recognition , 2003, Neural Computation.

[3]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Laurenz Wiskott,et al.  Face recognition by dynamic link matching , 1996 .

[6]  Christoph von der Malsburg,et al.  Learning control units for invariant recognition , 2003, Neurocomputing.

[7]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[8]  Elie Bienenstock,et al.  A neural network for invariant pattern recognition. , 1987 .

[9]  Parvati Dev,et al.  Perception of Depth Surfaces in Random-Dot Stereograms: A Neural Model , 1975, Int. J. Man Mach. Stud..

[10]  Christoph von der Malsburg,et al.  The What and Why of Binding The Modeler’s Perspective , 1999, Neuron.

[11]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[12]  L YuilleAlan,et al.  Feature extraction from faces using deformable templates , 1992 .

[13]  I. Biederman,et al.  Subordinate-level object classification reexamined , 1999, Psychological research.

[14]  Gérard G. Medioni,et al.  4-D voting for matching, densification and segmentation into motion layers , 2002, Object recognition supported by user interaction for service robots.

[15]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[16]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[17]  T. Poggio,et al.  III-Posed problems early vision: from computational theory to analogue networks , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[20]  K. Kaplan H. Haken, Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology (2nd Edition). XI + 355 S., 152 Abb. Berlin—Heidelberg—New York 1978. Springer-Verlag. DM 66,00 , 1980 .

[21]  Arthur Konnerth,et al.  Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells , 2003, Nature.

[22]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[23]  Arthur Konnerth,et al.  Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells , 2003, Nature.

[24]  Dale Stanley Antanitus,et al.  A Theory of Cortical Neuron-Astrocyte Interaction , 1998 .

[25]  Shimon Edelman,et al.  Representation, similarity, and the chorus of prototypes , 1993, Minds and Machines.

[26]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[27]  Michael I. Jordan,et al.  The Handbook of Brain Theory and Neural Networks , 2002 .

[28]  Takayuki Ito,et al.  Neocognitron: A neural network model for a mechanism of visual pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  Geoffrey E. Hinton A Parallel Computation that Assigns Canonical Object-Based Frames of Reference , 1981, IJCAI.

[30]  S. Ullman Aligning pictorial descriptions: An approach to object recognition , 1989, Cognition.

[31]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[32]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[33]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[34]  H. A.F.,et al.  DEVELOPMENT OF RETINOTOPIC PROJECTIONS: AN ANALYTIC TREATMENT , 1983 .

[35]  C. Malsburg,et al.  How patterned neural connections can be set up by self-organization , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[37]  Laurenz Wiskott,et al.  The role of topographical constraints in face recognition , 1999, Pattern Recognition Letters.

[38]  H. Haken Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .

[39]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[40]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[41]  D. Georgescauld Local Cortical Circuits, An Electrophysiological Study , 1983 .

[42]  T. Poggio,et al.  Ill-posed problems in early vision: from computational theory to analogue networks , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[43]  Christoph von der Malsburg,et al.  1-Click Learning of Object Models for Recognition , 2002, Biologically Motivated Computer Vision.

[44]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[46]  J. Pokorny Foundations of Cyclopean Perception , 1972 .

[47]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[48]  Koji Kurata,et al.  Extension of dynamic link matching by introducing local linear maps , 2000, IEEE Trans. Neural Networks Learn. Syst..

[49]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[50]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .

[52]  Christoph von der Malsburg,et al.  Dynamic link architecture , 1998 .

[53]  Lokendra Shastri,et al.  Rules and Variables in Neural Nets , 1991, Neural Computation.

[54]  Christoph von der Malsburg,et al.  Synapto-synaptic interactions speed up dynamic link matching , 2002, Neurocomputing.

[55]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[56]  Tj Sejnowski,et al.  Skeleton filters in the brain , 2014 .

[57]  Norbert Krüger,et al.  Face Recognition and Gender determination , 1995 .

[58]  久保 亮五,et al.  H. Haken: Synergetics; An Introduction Non-equilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology, Springer-Verlag, Berlin and Heidelberg, 1977, viii+325ページ, 251×17.5cm, 11,520円. , 1978 .

[59]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.