Computational analysis of a 9D model for a small DRG neuron

[1]  D. Flockerzi,et al.  Using Bifurcation Theory for Exploring Pain , 2019, bioRxiv.

[2]  D. Ginty,et al.  Deep Sequencing of Somatosensory Neurons Reveals Molecular Determinants of Intrinsic Physiological Properties , 2019, Neuron.

[3]  David L. Bennett,et al.  The Role of Voltage-Gated Sodium Channels in Pain Signaling. , 2019, Physiological reviews.

[4]  Christopher Fonnesbeck,et al.  Real-time decision-making during emergency disease outbreaks , 2018, PLoS Comput. Biol..

[5]  Rohit Manchanda,et al.  A biophysically detailed computational model of urinary bladder small DRG neuron soma , 2018, PLoS Comput. Biol..

[6]  Huiwen Ju,et al.  Bottom-up approach to torus bifurcation in neuron models. , 2018, Chaos.

[7]  S. Dib-Hajj,et al.  Atypical changes in DRG neuron excitability and complex pain phenotype associated with a Nav1.7 mutation that massively hyperpolarizes activation , 2018, Scientific Reports.

[8]  Paolo Massobrio,et al.  A single Markov-type kinetic model accounting for the macroscopic currents of all human voltage-gated sodium channel isoforms , 2017, PLoS Comput. Biol..

[9]  Y. Qadri,et al.  Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain , 2017, Expert opinion on therapeutic targets.

[10]  Luca Ponzoni,et al.  Unifying view of mechanical and functional hotspots across class A GPCRs , 2017, PLoS Comput. Biol..

[11]  S. Dib-Hajj,et al.  Nav1.7-A1632G Mutation from a Family with Inherited Erythromelalgia: Enhanced Firing of Dorsal Root Ganglia Neurons Evoked by Thermal Stimuli , 2016, The Journal of Neuroscience.

[12]  J. Wood,et al.  Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief , 2016, Expert opinion on therapeutic targets.

[13]  D. Jaffe,et al.  Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study , 2015, Journal of neurophysiology.

[14]  E. Krames,et al.  The role of the dorsal root ganglion in the development of neuropathic pain. , 2014, Pain medicine.

[15]  E. Thomas,et al.  A detailed, conductance-based computer model of intrinsic sensory neurons of the gastrointestinal tract. , 2014, American journal of physiology. Gastrointestinal and liver physiology.

[16]  E. Fransén,et al.  Modeling activity-dependent changes of axonal spike conduction in primary afferent C-nociceptors. , 2014, Journal of neurophysiology.

[17]  Yi Zhu,et al.  Criticality and degeneracy in injury-induced changes in primary afferent excitability and the implications for neuropathic pain , 2014, eLife.

[18]  S. Prescott,et al.  Author response: Criticality and degeneracy in injury-induced changes in primary afferent excitability and the implications for neuropathic pain , 2014 .

[19]  Maik Kschischo,et al.  Potassium Starvation in Yeast: Mechanisms of Homeostasis Revealed by Mathematical Modeling , 2012, PLoS Comput. Biol..

[20]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[21]  Steven A. Prescott,et al.  Identification of Molecular Pathologies Sufficient to Cause Neuropathic Excitability in Primary Somatosensory Afferents Using Dynamical Systems Theory , 2012, PLoS Comput. Biol..

[22]  W. Marszalek Circuits with Oscillatory Hierarchical Farey Sequences and Fractal Properties , 2012, Circuits Syst. Signal Process..

[23]  Jisheng Han,et al.  Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain , 2012, Molecular pain.

[24]  S. Waxman,et al.  Physiological interactions between Na(v)1.7 and Na(v)1.8 sodium channels: a computer simulation study. , 2011, Journal of neurophysiology.

[25]  S. Waxman,et al.  Kinetic modeling of Nav1.7 provides insight into erythromelalgia-associated F1449V mutation. , 2011, Journal of neurophysiology.

[26]  A. Patapoutian,et al.  Nociceptors: the sensors of the pain pathway. , 2010, The Journal of clinical investigation.

[27]  I. Spigelman,et al.  Increased peripheral nerve excitability and local NaV1.8 mRNA up-regulation in painful neuropathy , 2009, Molecular pain.

[28]  S. Waxman,et al.  Multiple sodium channel isoforms and mitogen‐activated protein kinases are present in painful human neuromas , 2008, Annals of neurology.

[29]  Y. Kuznetsov,et al.  New features of the software MatCont for bifurcation analysis of dynamical systems , 2008 .

[30]  N. Kopell,et al.  Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. , 2008, Chaos.

[31]  T. Kaper,et al.  Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. , 2008, Chaos.

[32]  S. Waxman,et al.  The roles of sodium channels in nociception: Implications for mechanisms of pain , 2007, PAIN.

[33]  Jonathan E. Rubin,et al.  Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.

[34]  Stephen G Waxman,et al.  A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity , 2007, The Journal of physiology.

[35]  A. M. Rush,et al.  Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons , 2007, The Journal of physiology.

[36]  L. Djouhri,et al.  Spontaneous Pain, Both Neuropathic and Inflammatory, Is Related to Frequency of Spontaneous Firing in Intact C-Fiber Nociceptors , 2006, The Journal of Neuroscience.

[37]  S. Waxman,et al.  Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. , 2001, Journal of neurophysiology.

[38]  Peter E. Strizhak,et al.  Period adding and broken Farey tree sequence of bifurcations for mixed-mode oscillations and chaos in the simplest three-variable nonlinear system , 2000 .

[39]  M. Devor,et al.  Membrane Potential Oscillations in Dorsal Root Ganglion Neurons: Role in Normal Electrogenesis and Neuropathic Pain , 1999, The Journal of Neuroscience.

[40]  S. Dib-Hajj,et al.  SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model , 1998, Neuroreport.

[41]  J. Levine,et al.  Characterization of six voltage-gated K+ currents in adult rat sensory neurons. , 1996, Journal of neurophysiology.

[42]  D L Kunze,et al.  A- and C-type rat nodose sensory neurons: model interpretations of dynamic discharge characteristics. , 1994, Journal of neurophysiology.

[43]  F. W. Schneider,et al.  Chaos in a Farey Sequence Through Period-Doubling in the Peroxidase-Oxidase Reaction , 1994 .

[44]  F. Albahadily,et al.  Mixed‐mode oscillations in an electrochemical system. I. A Farey sequence which does not occur on a torus , 1989 .

[45]  Harry L. Swinney,et al.  Complex periodic oscillations and Farey arithmetic in the Belousov–Zhabotinskii reaction , 1986 .

[46]  J. Rinzel,et al.  Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations , 1980 .

[47]  B. Hassard Bifurcation of periodic solutions of Hodgkin-Huxley model for the squid giant axon. , 1978, Journal of theoretical biology.

[48]  W. Troy The bifurcation of periodic solutions in the Hodgkin-Huxley equations , 1978 .

[49]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[50]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[51]  C. Sherrington Qualitative difference of spinal reflex corresponding with qualitative difference of cutaneous stimulus , 1903, The Journal of physiology.

[52]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.