Exercises in pyrrolidine chemistry: gram scale synthesis of a Pro-Pro dipeptide mimetic with a polyproline type II helix conformation.

A practical and scalable synthesis of a Fmoc-protected tricyclic dipeptide mimetic (6), that is, a 1,4-diaza-tricyclo-[8.3.0(3,7)]-tridec-8-ene derivative resembling a rigidified di-L-proline in a polyproline type II (PPII) helix conformation, was developed. The strategy is based on a Ru-catalyzed ring-closing metathesis of a dipeptide (4) prepared by PyBOP coupling of cis-5-vinylproline tert-butylester (2) and trans-N-Boc-3-vinylproline (rac-3) followed by chromatographic diastereomer separation. Building block 2 was prepared from L-proline in six steps via electrochemical C5-methoxylation, cyanation and conversion of the nitrile into a vinyl substituent. Building block rac-3 was prepared in five steps exploiting a Cu-catalyzed 1,4-addition of vinyl-MgBr to a 2,3-dehydroproline derivative in the key step. In the course of the investigation subtle dependencies of protecting groups on the reactivity of the 2,3- and 2,5-disubstituted pyrrolidine derivatives were observed. The configuration and conformational preference of several intermediates were determined by X-ray crystallography. The developed synthesis allows the preparation of substantial amounts of 6, which will be used in the search for new small molecules for the modulation of protein-protein interactions involving proline-rich motifs (PRDs).

[1]  W. Im,et al.  Novel pyrrolopyrimidine-based α-helix mimetics: cell-permeable inhibitors of protein−protein interactions. , 2011, Journal of the American Chemical Society.

[2]  J. Neudörfl,et al.  A practical synthesis of trans-3-substituted proline derivatives through 1,4-addition. , 2011, Organic letters.

[3]  Jody M Mason,et al.  Design and development of peptides and peptide mimetics as antagonists for therapeutic intervention. , 2010, Future medicinal chemistry.

[4]  R. Kühne,et al.  Addressing protein-protein interactions with small molecules: a Pro-Pro dipeptide mimic with a PPII helix conformation as a module for the synthesis of PRD-binding ligands. , 2010, Angewandte Chemie.

[5]  Peter H. Huy,et al.  Adressierung von Protein-Protein-Wechselwirkungen durch niedermolekulare Verbindungen: ein Pro-Pro-Dipeptidmimetikum mit PPII-Helixkonformation als Modul für die Synthese PRD-bindender Liganden† , 2010 .

[6]  M. Kuriyama,et al.  Electrochemical deallylation of alpha-allyl cyclic amines and synthesis of optically active quaternary cyclic amino acids. , 2010, Chemistry.

[7]  Raymond E. Moellering,et al.  Direct inhibition of the NOTCH transcription factor complex , 2009, Nature.

[8]  B. König,et al.  Peptidomimetics – A Versatile Route to Biologically Active Compounds , 2009 .

[9]  R. Lührmann,et al.  Proline-rich Sequence Recognition , 2009, Molecular & Cellular Proteomics.

[10]  T. Keiderling,et al.  Vibrational circular dichroism spectra of unblocked proline oligomers. , 2009, International journal of peptide and protein research.

[11]  N. Helbecque,et al.  Critical chain length for polyproline-II structure formation in H-Gly-(Pro)n-OH. , 2009, International journal of peptide and protein research.

[12]  A. Sacchetti,et al.  A new spirocyclic proline-based lactam as efficient type II′ β-turn inducing peptidomimetic , 2008 .

[13]  V. Hruby,et al.  Peptidomimetics, a synthetic tool of drug discovery. , 2008, Current opinion in chemical biology.

[14]  R. Nussinov,et al.  Principles of protein-protein interactions: what are the preferred ways for proteins to interact? , 2008, Chemical reviews.

[15]  Jean Rodriguez,et al.  Microwave‐Assisted Olefin Metathesis , 2008 .

[16]  H. Lanig,et al.  Molecular building kit of fused-proline-derived peptide mimetics allowing specific adjustment of the dihedral Psi angle. , 2007, The Journal of organic chemistry.

[17]  John A. Robinson,et al.  Biaryl amino acid templates in place of D-Pro-L-Pro in cyclic beta-hairpin cationic antimicrobial peptidomimetics. , 2007, Organic & biomolecular chemistry.

[18]  J. Chmielewski,et al.  Probing length effects and mechanism of cell penetrating agents mounted on a polyproline helix scaffold. , 2007, Bioorganic & medicinal chemistry letters.

[19]  Holger Gohlke,et al.  Targeting protein-protein interactions with small molecules: challenges and perspectives for computational binding epitope detection and ligand finding. , 2006, Current medicinal chemistry.

[20]  G. Marucci,et al.  Highly chiral muscarinic ligands: the discovery of (2S,2'R,3'S,5'R)-1-methyl-2-(2-methyl-1,3-oxathiolan-5-yl)pyrrolidine 3-sulfoxide methyl iodide, a potent, functionally selective, M2 partial agonist. , 2006, Journal of medicinal chemistry.

[21]  P. Arya,et al.  Natural product-like chemical space: search for chemical dissectors of macromolecular interactions. , 2005, Current opinion in chemical biology.

[22]  H. Oschkinat,et al.  Erkennung Prolin‐reicher Motive (PRMs) durch Protein‐Protein‐Wechselwirkungsdomänen , 2005 .

[23]  Ronald Kühne,et al.  Recognition of proline-rich motifs by protein-protein-interaction domains. , 2005, Angewandte Chemie.

[24]  Olga Makarova,et al.  The human U5 snRNP 52K protein (CD2BP2) interacts with U5-102K (hPrp6), a U4/U6.U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation. , 2005, RNA.

[25]  G. Molander,et al.  Investigations concerning the organolanthanide and group 3 metallocene-catalyzed cyclization–functionalization of nitrogen-containing dienes , 2005 .

[26]  Y. Pommier,et al.  Interfacial inhibition of macromolecular interactions: nature's paradigm for drug discovery. , 2005, Trends in pharmacological sciences.

[27]  Angel Díaz-Ortiz,et al.  Microwaves in organic synthesis. Thermal and non-thermal microwave effects. , 2005, Chemical Society reviews.

[28]  C. Kappe,et al.  Controlled microwave heating in modern organic synthesis. , 2004, Angewandte Chemie.

[29]  C. Kappe Kontrolliertes Erhitzen mit Mikrowellen in der modernen organischen Synthese , 2004 .

[30]  T. Berg Modulation of protein-protein interactions with small organic molecules. , 2003, Angewandte Chemie.

[31]  T. Berg Modulation von Protein‐Protein‐Wechselwirkungen mit niedermolekularen organischen Molekülen , 2003 .

[32]  U. Walter,et al.  EVH1 domains: structure, function and interactions , 2002, FEBS letters.

[33]  Gianni Cesareni,et al.  Normalization of nomenclature for peptide motifs as ligands of modular protein domains , 2002, FEBS letters.

[34]  M. Garcia-Blanco,et al.  The Transcription Elongation Factor CA150 Interacts with RNA Polymerase II and the Pre-mRNA Splicing Factor SF1 , 2001, Molecular and Cellular Biology.

[35]  M. Lipton,et al.  Synthesis and analysis of the sterically constrained l-glutamine analogues (3S,4R)-3,4-dimethyl-l-glutamine and (3S,4R)-3,4-dimethyl-l-pyroglutamic acid , 2001 .

[36]  C. Leumann,et al.  Synthesis of pyrrolidine C-nucleosides via Heck reaction. , 2001, Organic letters.

[37]  B. Liu,et al.  Anodic Amide Oxidation/Olefin Metathesis Strategies: Developing a Unified Approach to the Synthesis of Bicyclic Lactam Peptidomimetics , 2000 .

[38]  A. Nishida,et al.  Construction of chiral 1,2-cycloalkanopyrrolidines from L-proline using ring closing metathesis (RCM). , 2000, Chemical & pharmaceutical bulletin.

[39]  P. Schmieder,et al.  Dual epitope recognition by the VASP EVH1 domain modulates polyproline ligand specificity and binding affinity , 2000, The EMBO journal.

[40]  Patricia L. Widder,et al.  A Novel Adaptor Protein Orchestrates Receptor Patterning and Cytoskeletal Polarity in T-Cell Contacts , 1998, Cell.

[41]  K. Moeller,et al.  A sequential electrochemical Oxidation - olefin metathesis strategy for the construction of bicyclic lactam based peptidomimetics , 1998 .

[42]  S. Matsubara,et al.  Methylenation of Carbonyl Compounds by Means of Nysted Reagent , 1998 .

[43]  R. Furneaux,et al.  Synthesis of transition state inhibitors for N-riboside hydrolases and transferases , 1997 .

[44]  N. Moss,et al.  An Enantioselective Synthesis of Cyclopentyl-L-Aspartic Acid Amenable to Large Scale , 1997 .

[45]  J. J. Vaquero,et al.  4-benzyl-2,3-didehydroprolinate as a homochiral template for michael additions. Synthesis of enantiopure α-allokainoids, β-kainoids, 2,3-methanoprolines and other 3,4-disubstituted prolines , 1996 .

[46]  Scott J. Miller,et al.  Synthesis of Conformationally Restricted Amino Acids and Peptides Employing Olefin Metathesis , 1995 .

[47]  C. Herdeis,et al.  Synthesis of homochiral 3-substituted glutamic acids and prolines from pyroglutamic acid , 1994 .

[48]  Tatsunori Sato,et al.  Carbamoylmethl Radical Cyclization : Formal Synthesis of (-)-Trachelanthamidine , 1992 .

[49]  C. Herdeis,et al.  Synthesis of homochiral R-baclofen from S-glutamic acid , 1992 .

[50]  J. Biellmann,et al.  Syntheses of proline analogs as potential mechanism-based inhibitors of proline dehydrogenase: 4-methylene-L-, (E)- and (Z)-4-(fluoromethylene)-L-, cis- and trans-5-ethynyl-(.+-.)-, and cis- and trans-5-vinyl-L-proline , 1992 .

[51]  T. Keiderling,et al.  Reassessment of the random coil conformation: Vibrational CD study of proline oligopeptides and related polypeptides , 1991, Biopolymers.

[52]  R. Z. Andriamialisoa,et al.  Diastereoselective synthesis of (2S,3R) 2-carboxy-3-pyrrolidine acetic acid, a simple kainic acid analogue , 1991 .

[53]  K. Hashimoto,et al.  Synthesis of new acromelic acid congeners: novel neuroexcitatory amino acids acting on glutamate receptor , 1991 .

[54]  M. Skrinjar,et al.  Chirospecific synthesis of trans-2,5-disubstituted pyrrolidines via stereoselective addition of organocopper reagents to N-acyliminium ions. , 1991 .

[55]  A. Barrett,et al.  ELECTROCHEMICAL OXIDATION OF PROLINE DERIVATIVES : TOTAL SYNTHESES OF BULGECININE AND BULGECIN C , 1991 .

[56]  D. Tanner,et al.  A potential carbapenem intermediate from L-glutamic acid , 1991 .

[57]  G. Quinkert,et al.  Totalsynthese des Pseudoguaianolids (+)‐Confertin , 1988 .

[58]  T. Shono Electroorganic chemistry in organic synthesis , 1985 .

[59]  Johannes Häusler Darstellung von cis‐ und trans‐C‐3‐substituierten Prolinverbindungen , 1981 .

[60]  W. Graf,et al.  Synthetische Verwendung von Epoxynitronen. III. Der anomere Effekt als bestimmender Faktor für die Konformation der 3‐Cyano‐perhydro‐1,2‐benzoxazine , 1979 .

[61]  M. Jung,et al.  Conversion of alkyl carbamates into amines via treatment with trimethylsilyl iodide , 1978 .

[62]  H. Poisel,et al.  Über Aminosäuren und Peptide, XIV. Über Dehydroaminosäuren, II. Dehydroaminosäuren aus Aminosäuren , 1975 .

[63]  Hiroshi Hamaguchi,et al.  Electroorganic chemistry. XX. Anodic oxidation of carbamates , 1975 .

[64]  R. Sarges,et al.  Synthesis of aryl-substituted 1,3- and 1,4-diazocine derivatives , 1974 .

[65]  J. G. Moffatt,et al.  C-glycosyl nucleosides. II. A facile synthesis of derivatives of 2,5-anhydro-D-allose. , 1973, The Journal of organic chemistry.

[66]  E. Blout,et al.  Nuclear magnetic resonance evidence for cis-peptide bonds in proline oligomers. , 1970, Journal of the American Chemical Society.

[67]  R. G. Webb,et al.  A nuclear magnetic resonance method for distinguishing .alpha.-amino acids from .beta. and .gamma. isomers , 1969 .

[68]  S. Sakakibara,et al.  Steric structure of L‐proline oligopeptides. II. Far‐ultraviolet absorption spectra and optical rotations of L‐proline oligopeptides , 1968, Biopolymers.

[69]  A. Mauger,et al.  The Stereochemistry of 3-Methylproline , 1966 .

[70]  P. Cowan,et al.  Structure of Poly-L-Proline , 1955, Nature.

[71]  Mercedes Martín-Martínez,et al.  Modulation of protein-protein interactions by stabilizing/mimicking protein secondary structure elements. , 2007, Current topics in medicinal chemistry.

[72]  D. Kemp,et al.  An Improved Synthesis of a Template for .alpha.-Helix Formation , 1995 .

[73]  N. Langlois,et al.  A short synthesis of C-2 symmetric (2S, 5S) pyrrolidine-2,5 dicarboxylic acid, a constituent of red alga Schizymenia dubyi , 1993 .

[74]  W. Arnold,et al.  Conformationally constrained amino acids. Synthesis and optical resolution of 3-substituted proline derivatives , 1990 .

[75]  Virander S. Chauhan,et al.  Trimethylsilyl iodide as a peptide deblocking agent , 1979 .

[76]  B. Staskun,et al.  777. A novel reduction of nitriles to aldehydes , 1962 .

[77]  S. Guttmann Synthèse de la Val5-D-Phe8-angiotensine-I et nouvelle synthèse de la Val5-angiotensine-I , 1961 .